Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms

Bhanu Prasad Venkatesulu, Lakshmi Shree Mahadevan, Maureen L Aliru, Xi Yang, Monica Himaani Bodd, Pankaj K Singh, Syed Wamique Yusuf, Jun-Ichi Abe, Sunil Krishnan, Bhanu Prasad Venkatesulu, Lakshmi Shree Mahadevan, Maureen L Aliru, Xi Yang, Monica Himaani Bodd, Pankaj K Singh, Syed Wamique Yusuf, Jun-Ichi Abe, Sunil Krishnan

Abstract

In radiation therapy for cancer, the therapeutic ratio represents an optimal balance between tumor control and normal tissue complications. As improvements in the therapeutic arsenal against cancer extend longevity, the importance of late effects of radiation increases, particularly those caused by vascular endothelial injury. Radiation both initiates and accelerates atherosclerosis, leading to vascular events like stroke, coronary artery disease, and peripheral artery disease. Increased levels of proinflammatory cytokines in the blood of long-term survivors of the atomic bomb suggest that radiation evokes a systemic inflammatory state responsible for chronic vascular side effects. In this review, the authors offer an overview of potential mechanisms implicated in radiation-induced vascular injury.

Keywords: ATM, ataxia telangiectasia mutated; CD, cluster of differentiation; EC, endothelial cell; HUVEC, human umbilical vein endothelial cell; IGF, insulin-like growth factor; IGFBP, insulin-like growth factor binding protein; LDL, low-density lipoprotein; MAPK, mitogen-activated protein kinase; NEMO, nuclear factor kappa B essential modulator; NF-κB, nuclear factor-kappa beta; ROS, reactive oxygen species; SEK1, stress-activated protein kinase 1; TNF, tumor necrosis factor; XIAP, X-linked inhibitor of apoptosis; angiogenesis; apoptosis; cytokines; mTOR, mammalian target of rapamycin; senescence.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Proposed Interplay Between Apoptosis and Endothelial Senescence and Its Implications for Pathogenesis ATM = ataxia telangiectasia mutated; b-FGF = basic fibroblast growth factor; ERK = extracellular signal-regulated kinase; IGF = insulin-like growth factor; LDL = low-density lipoprotein; MAPK = mitogen-activated protein kinase; SASP = senescence-associated secretory phenotype; SEK1 = stress-activated protein kinase 1; TNF = tumor necrosis factor.
Figure 2
Figure 2
Possible Mechanisms Implicated in Radiation-Induced Vascular Injury CAD = coronary artery disease; CNS = central nervous system; CVA = cerebrovascular accident; CXCL = chemokine ligand; IGFBP-5 = insulin-like growth factor binding protein; NEMO = nuclear factor kappa B essential modulator; PAD = peripheral artery disease; PAI = plasminogen activator inhibitor; SMA = smooth muscle actin; SPRY = sprout homolog; TLR = Toll-like receptor; vWF = von Willebrand factor; XIAP = X-linked inhibitor of apoptosis.
Central Illustration
Central Illustration
Changes That Occur in Vasculature After Radiation Exposure IL = interleukin; TNF = tumor necrosis factor; vWF = von Willebrand factor.

References

    1. Delaney G., Jacob S., Featherstone C., Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104:1129–1137.
    1. Darby S.C., Ewertz M., Hall P. Ischemic heart disease after breast cancer radiotherapy. N Engl J Med. 2013;368:252–257.
    1. Shimizu Y., Kodama K., Nishi N., Kasagi F., Suyama A., Soda M. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ. 2010;340:b5349.
    1. Miura S., Yamaguchi M., Shimizu N., Abiko Y. Mechanical stress enhances expression and production of plasminogen activator in aging human periodontal ligament cells. Mech Ageing Dev. 2000;112:217–231.
    1. Dimitrievich G.S., Fischer-Dzoga K., Griem M.L. Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res. 1984;99:511–535.
    1. Doyle B., Metharom P., Caplice N.M. Endothelial progenitor cells. Endothelium. 2006;13:403–410.
    1. Mendonca M.S., Chin-Sinex H., Dhaemers R., Mead L.E., Yoder M.C., Ingram D.A. Differential mechanisms of x-ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults. Radiat Res. 2011;176:208–216.
    1. Coppé J.-P., Desprez P.-Y., Krtolica A., Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;2010:99–118.
    1. Lowe D., Horvath S., Raj K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget. 2016;7:8524–8531.
    1. Kim K.S., Kim J.E., Choi K.J., Bae S., Kim D.H. Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells. Int J Radiat Biol. 2014;90:71–80.
    1. Kim K.S., Seu Y.B., Baek S.-H., Kim M.J., Kim K.J., Kim J.H. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell. 2007;18:4543–4552.
    1. Beauséjour C.M., Krtolica A., Galimi F., Narita M., Lowe S.W., Yaswen P. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22:4212–4222.
    1. Yentrapalli R., Azimzadeh O., Sriharshan A., Malinowsky K., Merl J., Wojcik A. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One. 2013;8:e70024.
    1. Jacinto E., Loewith R., Schmidt A., Lin S., Ruegg M.A., Hall A. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–1128.
    1. Mun G.I., Boo Y.C. Identification of CD44 as a senescence-induced cell adhesion gene responsible for the enhanced monocyte recruitment to senescent endothelial cells. Am J Physiol Heart Circ Physiol. 2010;298:H2102–H2111.
    1. Lowe D., Raj K. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell. 2014;13:900–910.
    1. Panganiban R.A.M., Mungunsukh O., Day R.M. X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells. Int J Radiat Biol. 2013;89:656–667.
    1. Dong X., Tong F., Qian C., Zhang R., Dong J., Wu G. NEMO modulates radiation-induced endothelial senescence of human umbilical veins through NF-κB signal pathway. Radiat Res. 2015;183:82–93.
    1. Heo J.-I., Kim W., Choi K.J., Bae S., Jeong J.-H., Kim K.S. XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence. Oncotarget. 2016;7:5118–5130.
    1. Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., van de Sluis B. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–236.
    1. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.
    1. Seideman J.H., Stancevic B., Rotolo J.A., McDevitt M.R., Howell R.W., Kolesnick R.N. Alpha particles induce apoptosis through the sphingomyelin pathway. Radiat Res. 2011;176:434–446.
    1. Sathishkumar S., Boyanovsky B., Karakashian A.A., Rozenova K., Giltiay N.V., Kudrimoti M. Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis. Cancer Biol Ther. 2005;4:979–986.
    1. Sánchez I., Hughes R.T., Mayer B.J., Yee K., Woodgett J.R., Avruch J. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature. 1994;1994(372):794–798.
    1. Zhang Y., Yao B., Delikat S., Bayoumy S., Lin X.H., Basu S. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell. 1997;89:63–72.
    1. Gulbins E., Coggeshall K.M., Brenner B., Schlottmann K., Linderkamp O., Lang F. Fas-induced apoptosis is mediated by activation of a Ras and Rac protein-regulated signaling pathway. J Biol Chem. 1996;271:26389–26394.
    1. Huwiler A., Brunner J., Hummel R., Vervoordeldonk M., Stabel S., van den Bosch H. Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A. 1996;93:6959–6963.
    1. Kashiwagi K., Shirai Y., Kuriyama M., Sakai N., Saito N. Importance of C1B domain for lipid messenger-induced targeting of protein kinase C. J Biol Chem. 2002;277:18037–18045.
    1. Fuks Z., Persaud R.S., Alfieri A., McLoughlin M., Ehleiter D., Schwartz J.L. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 1994;54:2582–2590.
    1. Langley R.E., Bump E.A., Quartuccio S.G., Medeiros D., Braunhut S.J. Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer. 1997;75:666–672.
    1. Santana P., Peña L.A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996;86:189–199.
    1. Xu X.X., Tabas I. Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages. J Biol Chem. 1991;266:24849–24858.
    1. Baluna R.G., Eng T.Y., Thomas C.R. Adhesion molecules in radiotherapy. Radiat Res. 2006;166:819–831.
    1. Prabhakarpandian B., Goetz D.J., Swerlick R.A., Chen X., Kiani M.F. Expression and functional significance of adhesion molecules on cultured endothelial cells in response to ionizing radiation. Microcirculation. 2001;8:355–364.
    1. Hallahan D., Clark E.T., Kuchibhotla J., Gewertz B.L., Collins T. E-selectin gene induction by ionizing radiation is independent of cytokine induction. Biochem Biophys Res Commun. 1995;217:784–795.
    1. Handschel J., Prott F.J., Sunderkötter C., Metze D., Meyer U., Joos U. Irradiation induces increase of adhesion molecules and accumulation of beta2-integrin-expressing cells in humans. Int J Radiat Oncol Biol Phys. 1999;45:475–481.
    1. Pathak R., Wang J., Garg S., Aykin-Burns N., Petersen K.-U., Hauer-Jensen M. Recombinant thrombomodulin (solulin) ameliorates early intestinal radiation toxicity in a preclinical rat model. Radiat Res. 2016;186:112–120.
    1. Sempoux C., Horsmans Y., Geubel A., Fraikin J., Van Beers B.E., Gigot J.F. Severe radiation-induced liver disease following localized radiation therapy for biliopancreatic carcinoma: activation of hepatic stellate cells as an early event. Hepatology. 1997;26:128–134.
    1. Krigsfeld G.S., Kennedy A.R. Is disseminated intravascular coagulation the major cause of mortality from radiation at relatively low whole body doses? Radiat Res. 2013;180:231–234.
    1. Abderrahmani R., François A., Buard V., Tarlet G., Blirando K., Hneino M. PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS One. 2012;7:e35740.
    1. Vallance P., Hingorani A. Endothelial nitric oxide in humans in health and disease. Int J Exp Pathol. 1999;80:291–303.
    1. Turer A.T., Hill J.A. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106:360–368.
    1. Panés J., Granger D.N. Neutrophils generate oxygen free radicals in rat mesenteric microcirculation after abdominal irradiation. Gastroenterology. 1996;111:981–989.
    1. Sugihara T., Hattori Y., Yamamoto Y., Qi F., Ichikawa R., Sato A. Preferential impairment of nitric oxide-mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Circulation. 1999;100:635–641.
    1. Beckman J.S., Crow J.P. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans. 1993;21:330–334.
    1. Przybyszewski W.M., Widel M., Rzeszowska-Wolny J. (Cardiotoxic consequences of ionizing radiation and anthracyclines) Postepy higieny i medycyny doswiadczalnej (Online) 2006;60:397–405.
    1. Antunes F., Han D., Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to HO(2) detoxification in in vivo conditions. Free Radic Biol Med. 2002;33:1260–1267.
    1. Singal P.K., Khaper N., Palace V., Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res. 1998;40:426–432.
    1. Molla M., Gironella M., Salas A., Closa D., Biete A., Gimeno M. Protective effect of superoxide dismutase in radiation-induced intestinal inflammation. Int J Radiat Oncol Biol Phys. 2005;61:1159–1166.
    1. Akpolat M., Gulle K., Topcu-Tarladacalisir Y., Safi Oz Z., Bakkal B.H., Arasli M. Protection by L-carnitine against radiation-induced ileal mucosal injury in the rat: pattern of oxidative stress, apoptosis and cytokines. Int J Radiat Biol. 2013;89:732–740.
    1. Halle M., Gabrielsen A., Paulsson-Berne G., Gahm C., Agardh H.E., Farnebo F. Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J Am Coll Cardiol. 2010;55:1227–1236.
    1. Salvemini D., Riley D.P., Cuzzocrea S. SOD mimetics are coming of age. Nat Rev Drug Discov. 2002;1:367–374.
    1. Anderson C.M., Sonis S.T., Lee C.M., Adkins D., Allen B.G., Sun W. Phase 1b/2a Trial of the superoxide dismutase mimetic GC4419 to reduce chemoradiotherapy-induced oral mucositis in patients with oral cavity or oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2018;100:427–435.
    1. Pordanjani S.M., Hosseinimehr S.J. The role of NF-κB inhibitors in cell response to radiation. Curr Med Chem. 2016;23:3951–3963.
    1. Deorukhkar A., Krishnan S. Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol. 2010;80:1904–1914.
    1. Yamamoto Y., Gaynor R.B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107:135–142.
    1. Linard C., Marquette C., Mathieu J., Pennequin A., Clarençon D., Mathé D. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kappaB inhibitor. Int J Radiat Oncol Biol Phys. 2004;58:427–434.
    1. Meeren A.V., Bertho J.M., Vandamme M., Gaugler M.H. Ionizing radiation enhances IL-6 and IL-8 production by human endothelial cells. Mediators Inflamm. 1997;6:185–193.
    1. Mezzaroma E., Mikkelsen R.B., Toldo S., Mauro A.G., Sharma K., Marchetti C. Role of interleukin-1 in radiation-induced cardiomyopathy. Mol Med. 2015;21:210–218.
    1. Fujimori A., Okayasu R., Ishihara H., Yoshida S., Eguchi-Kasai K., Nojima K. Extremely low dose ionizing radiation up-regulates CXC chemokines in normal human fibroblasts. Cancer Res. 2005;65:10159–10163.
    1. Hayashi T., Kusunoki Y., Hakoda M., Morishita Y., Kubo Y., Maki M. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. Int J Radiat Biol. 2003;79:129–136.
    1. Emerit I., Quastel M., Goldsmith J., Merkin L., Levy A., Cernjavski L. Clastogenic factors in the plasma of children exposed at Chernobyl. Mutat Res. 1997;373:47–54.
    1. Pilones K.A., Formenti S., Demaria S. Peritumoral IL-15 potentiates radiation-induced anti-tumor immunity. Int J Radiat Oncol Biol Phys. 2016;96:S129.
    1. Golden E.B., Chhabra A., Chachoua A., Adams S., Donach M., Fenton-Kerimian M. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16:795–803.
    1. Park M.-T., Oh E.-T., Song M.-J., Lee H., Park H.J. Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs. J Radiat Res. 2012;53:570–580.
    1. Acker J.C., Marks L.B., Spencer D.P., Yang W., Avery M.A., Dodge R.K. Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation. Radiat Res. 1998;149:350–359.
    1. Haimovitz-Friedman A., Witte L., Chaudhuri A., McLoughlin M., Fuks Z. Induction of growth factor genes in endothelial cells by ionizing radiation. Radiat Oncol Investig. 1995;3:1–8.
    1. Vincenti S., Brillante N., Lanza V., Bozzoni I., Presutti C., Chiani F. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat Res. 2011;175:535–546.
    1. Milliat F., François A., Isoir M., Deutsch E., Tamarat R., Tarlet G. Influence of endothelial cells on vascular smooth muscle cells phenotype after irradiation: implication in radiation-induced vascular damages. Am J Pathol. 2006;169:1484–1495.
    1. Girdhani S., Lamont C., Hahnfeldt P., Abdollahi A., Hlatky L. Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth. Radiat Res. 2012;178:33–45.
    1. Girdhani S., Sachs R., Hlatky L. Biological effects of proton radiation: what we know and don't know. Radiat Res. 2013;179:257–272.
    1. Azzam E.I., Jay-Gerin J.-P., Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60.
    1. Liao E.C., Hsu Y.T., Chuah Q.Y., Lee Y.J., Hu J.Y., Huang T.C. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 2014;5:e1255.
    1. Matsumura S., Wang B., Kawashima N., Braunstein S., Badura M., Cameron T.O. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181:3099–3107.

Source: PubMed

3
購読する