The acute effects of walking exercise intensity on systemic cytokines and oxidative stress

Malcolm Brown, Conor M McClean, Gareth W Davison, John C W Brown, Marie H Murphy, Malcolm Brown, Conor M McClean, Gareth W Davison, John C W Brown, Marie H Murphy

Abstract

Purpose: Oxidative stress is associated with tissue cytokine secretion although the precise mechanism(s) underpinning this relationship during high intensity intermittent exercise remains unclear. This study investigates the acute response to a bout of high intensity intermittent walking (HIIW), compared to continuous moderate intensity walking (CMW), on various cytokines and biomarkers of oxidative stress.

Methods: Seventeen (n = 17) apparently healthy male participants (aged 22.6 ± 4.6 years; [Formula: see text]: 53.7 ± 7.1 ml kg-1 min-1) undertook a randomised crossover study consisting of two exercise trials: (1) HIIW requiring 3 × 5 min bursts at 80% [Formula: see text] (each separated by 5 min of walking at 30% [Formula: see text]) and (2) CMW (60% [Formula: see text] for 30 min). Each trial was separated by 7 days. Venous blood samples were obtained pre-exercise, post-exercise and at 2, 4, 24 and 48 h post-exercise for determination of systemic inflammation (IL-6 and TNF-α), lipid soluble antioxidants and oxidative stress (LOOH, H2O2 and the ascorbyl free radical).

Results: Both IL-6 and TNF-α increased immediately post exercise, regardless of intensity and remained elevated until at least 4 h (main effect for time; p < 0.05). While there was no change in either lipid peroxidation or free radical metabolism (Asc· and H2O2), α-tocopherol increased (pooled HIIW and CMW, p < 0.05), whereas lycopene decreased at 2 h post HIIW (p < 0.05).

Conclusion: Bouts of both HIIW and CMW promote cytokine secretion post exercise, and this seems to be independent of oxidative stress. Further investigation is required to assess how such changes may underpin some of the transient health benefits of exercise.

Keywords: Cytokine; High intensity intermittent exercise; Oxidative stress; Walking.

Conflict of interest statement

None of the authors have a professional relationship with companies or manufacturers that might benefit from the results of the present study.

Figures

Fig. 1
Fig. 1
Effects of walking intensity on IL-6 over time (n = 17). Main effect for time at post exercise, 2 h and 4 h versus baseline (p < 0.05; pooled HIIW and CMW data)
Fig. 2
Fig. 2
Effects of walking intensity on TNF-α over time (n 17). Main effect for time at post exercise, 2, 4, 24 and 48 h versus baseline (p < 0.05; pooled HIIW and CMW data)
Fig. 3
Fig. 3
Effects of exercise intensity on endothelin-1 over time (n 17). Main effect for time at post exercise versus baseline (p < 0.05; pooled HIIW and CMW data)
Fig. 4
Fig. 4
Effects of walking intensity on α-tocopherol over time (n 17). Main effect for time at 2 and 4 h versus baseline (p < 0.05; pooled HIIW and CMW data)
Fig. 5
Fig. 5
Effects of walking exercise intensity on lycopene over time (n 17). Lycopene decreased at 2 h versus baseline (*) and post-exercise (#) (p < 0.05) in the HIIW trial only

References

    1. Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, Wiley RL. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32:1576–1581. doi: 10.1097/00005768-200009000-00008.
    1. Altman DG. Statistics and ethics in medical research: III How large a sample? Br Med J. 1980;281:1336–1338. doi: 10.1136/bmj.281.6251.1336.
    1. Böhm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res. 2007;76:8–18. doi: 10.1016/j.cardiores.2007.06.004.
    1. Boutcher SH. High-intensity intermittent exercise and fat loss. J Obes. 2011 doi: 10.1155/2011/868305.
    1. Cawthorn WP, Sethi JK. TNF-alpha and adipocyte biology. FEBS Lett. 2008;582:117–131. doi: 10.1016/j.febslet.2007.11.051.
    1. Chu WM. Tumor necrosis factor. Cancer Lett. 2013;328:222–225. doi: 10.1016/j.canlet.2012.10.014.
    1. Davison GW, Ashton T, McEneny J, Young IS, Davies B, Bailey DM. Critical difference applied to exercise-induced oxidative stress: the dilemma of distinguishing biological from statistical change. J Physiol Biochem. 2012;68:377–384. doi: 10.1007/s13105-012-0149-z.
    1. Dixon NC, Hurst TL, Talbot DC, Tyrrell RM, Thompson D. Active middle-aged men have lower fasting inflammatory markers but the postprandial inflammatory response is minimal and unaffected by physical activity status. J Appl Physiol. 2009;107:63–68. doi: 10.1152/japplphysiol.91532.2008.
    1. Djordjevic DZ, Cubrilo DG, Puzovic VS, Vuletic MS, Zivkovic VI, Barudzic NS, Radovanovic DS, Djuric DM, Jakovljevic VL. Changes in athletes redox state induced by habitual and unaccustomed exercise. Oxid Med Cell Longev. 2012 doi: 10.1155/2012/805850.
    1. Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.
    1. Fogarty MC, Hughes CM, Burke G, Brown JC, Trinick TR, Duly E, Bailey DM, Davison GW. Exercise-induced lipid peroxidation: implications for deoxyribonucleic acid damage and systemic free radical generation. Environ Mol Mutagen. 2011;52:35–42. doi: 10.1002/em.20572.
    1. Francois ME, Little JP. Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Res Pract. 2015;28:39–44.
    1. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590:1077–1084. doi: 10.1113/jphysiol.2011.224725.
    1. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11:607–615. doi: 10.1038/nri3041.
    1. Haack M, Kraus T, Schuld A, Dalal M, Koethe D, Pollmacher T. Diurnal variations of interleukin-6 plasma levels are confounded by blood drawing procedures. Psychoneuroendocr. 2002;27:921–931. doi: 10.1016/S0306-4530(02)00006-9.
    1. Harris RA, Padilla J, Hanlon KP, Rink LD, Wallace JP. The flow-mediated dilation response to acute exercise in overweight active and inactive men. Obes. 2008;16:578–584. doi: 10.1038/oby.2007.87.
    1. He F, Li J, Liu Z, Chuang C-C, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016 doi: 10.3389/fphys.2016.00486.
    1. Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–1856. doi: 10.1249/MSS.0b013e3182199834.
    1. Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27:1292–1301. doi: 10.1249/00005768-199509000-00009.
    1. Kefaloyianni E, Gaitanaki C, Beis I. ERK 1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cell Signal. 2006;18:2238–2251. doi: 10.1016/j.cellsig.2006.05.004.
    1. Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-κB signalling in skeletal muscle. J Appl Physiol. 2007;103:388–395. doi: 10.1152/japplphysiol.00085.2007.
    1. Leggate M, Nowell MA, Jones SA, Nimmo MA. The response of interleukin-6 and soluble interleukin-6 receptor isoforms following intermittent high intensity and continuous moderate intensity cycling. Cell Stress Chaperones. 2010;15:827–833. doi: 10.1007/s12192-010-0192-z.
    1. Li TL, Gleeson M. The effects of carbohydrate supplementation during the second of two prolonged cycling bouts on immunoendocrine responses. Eur J Appl Physiol. 2005;95:391–399. doi: 10.1007/s00421-005-0024-5.
    1. Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, Jung ME, Gibala MJ. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol. 2011;111:1554–1560. doi: 10.1152/japplphysiol.00921.2011.
    1. Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300:1303–1310. doi: 10.1152/ajpregu.00538.2010.
    1. Maeda S, Sugawara J, Yoshizawa M, Otsuki T, Shimojo N, Jesmin S, Ajisaka R, Miyauchi T, Tanaka H. Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance. Acta Physiol. 2009;196:223–229. doi: 10.1111/j.1748-1716.2008.01909.x.
    1. McClean C, Harris RA, Brown M, Brown JC, Davison GW. Effects of exercise intensity on post-exercise endothelial function and oxidative stress. Oxid Med Cell Longev. 2015 doi: 10.1155/2015/723679.
    1. Mendham AE, Donges CE, Liberts EA, Duffield R. Effects of mode and intensity on the acute exercise-induced IL-6 and CRP responses in a sedentary, overweight population. Eur J Appl Physiol. 2011;111:1035–1045. doi: 10.1007/s00421-010-1724-z.
    1. Michailidis Y, Jamurtas AZ, Nikolaidis MG, Fatouros IG, Koutedakis Y, Papassotiriou I, Kouretas D. Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc. 2007;39:1107–1113. doi: 10.1249/01.mss.0b013e318053e7ba.
    1. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci. 2012;122:143–159. doi: 10.1042/CS20110340.
    1. Murphy MH, Nevill AM, Murtagh EM, Holder RL. The effect of walking on fitness, fatness and resting blood pressure: a meta-analysis of randomised, controlled trials. Prev Med. 2007;44:377–385. doi: 10.1016/j.ypmed.2006.12.008.
    1. Nieman DC, Henson DA, Austin MD, Brown VA. Immune response to a 30-minute walk. Med Sci Sports Exerc. 2005;37:57–62. doi: 10.1249/01.MSS.0000149808.38194.21.
    1. Ost M, Coleman V, Kasch J, Klaus S. Regulation of myokine expression: role of exercise and cellular stress. Free Radic Biol Med. 2016;98:78–89. doi: 10.1016/j.freeradbiomed.2016.02.018.
    1. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Chemokines are elevated in plasma after strenuous exercise in humans. Eur J Appl Physiol. 2001;84:244–245. doi: 10.1007/s004210170012.
    1. Parker L, McGuckin TA, Leicht AS. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clin Physiol Funct Imaging. 2014;34:377–383. doi: 10.1111/cpf.12108.
    1. Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18:357–371. doi: 10.1016/j.jnutbio.2006.10.005.
    1. Peake JM, Della Gatta P, Suzuki K, Nieman DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8–25.
    1. Pennathur S, Maitra D, Byun J, Sliskovic I, Abdulhamid I, Saed GM, Diamond MP, Abu-Soud HM. Potent antioxidative activity of lycopene: a potential role in scavenging hypochlorous acid. Free Radic Biol Med. 2010;49:205–213. doi: 10.1016/j.freeradbiomed.2010.04.003.
    1. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–1162. doi: 10.1152/japplphysiol.00164.2004.
    1. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–1276. doi: 10.1152/physrev.00031.2007.
    1. Powers SK, Talbert EE, Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol. 2011;589:2129–2138. doi: 10.1113/jphysiol.2010.201327.
    1. Quindry JC, Stone WL, King J, Broeder CE. The effects of acute exercise on neutrophils and plasma oxidative stress. Med Sci Sports Exerc. 2003;35:1139–1145. doi: 10.1249/01.MSS.0000074568.82597.0B.
    1. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signalling. Antioxid Redox Signal. 2013;18:1208–1246. doi: 10.1089/ars.2011.4498.
    1. Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016 doi: 10.1155/2016/7239639.
    1. Scheele C, Nielsen S, Pedersen BK. ROS and myokines promote muscle adaptation to exercise. Trends Endocr Metab. 2009;20:95–99. doi: 10.1016/j.tem.2008.12.002.
    1. Scott JP, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. Effect of exercise intensity on the cytokine response to an acute bout of running. Med Sci Sports Exerc. 2011;43:2297–2306. doi: 10.1249/MSS.0b013e31822113a9.
    1. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
    1. Stahl W, Sies H. Antioxidant activity of carotenoids. Mol Asp Med. 2003;24:345–351. doi: 10.1016/S0098-2997(03)00030-X.
    1. Steinberg JG, Ba A, Bregeon F, Delliaux S, Jammes Y. Cytokine and oxidative responses to maximal cycling exercise in sedentary subjects. Med Sci Sports Exerc. 2007;39:964–968. doi: 10.1097/mss.0b013e3180398f4b.
    1. Suzuki K. Cytokine response to exercise and its modulation. Antioxid. 2018 doi: 10.3390/antiox7010017.
    1. Thompson D, Dixon N. Measurement of postprandial interleukin-6 by using a catheter: what does it tell us? Am J Clin Nutr. 2009;90:1446–1447. doi: 10.3945/ajcn.2009.28460.
    1. Thurnham DI, Smith E, Flora PS. Concurrent liquid-chromatographic assay of retinol, alpha-tocopherol, beta-carotene, alpha-carotene, lycopene, and beta-cryptoxanthin in plasma, with tocopherol acetate as internal standard. Clin Chem. 1988;34:377–381.
    1. Trayhurn P, Drevon CA, Eckel J. Secreted proteins from adipose tissue and skeletal muscle—adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem. 2011;117:47–56. doi: 10.3109/13813455.2010.535835.
    1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Vassilakopoulos T, Karatza MH, Katsaounou P, Kollintza A, Zakynthinos S, Roussos C. Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol. 2003;94:1025–1032. doi: 10.1152/japplphysiol.00735.2002.
    1. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26:1–14. doi: 10.1016/j.molcel.2007.03.016.
    1. Welc SS, Clanton TL. The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol. 2013;98:359–371. doi: 10.1113/expphysiol.2012.068189.

Source: PubMed

3
購読する