Randomized controlled trial of the effects of high intensity and low-to-moderate intensity exercise on physical fitness and fatigue in cancer survivors: results of the Resistance and Endurance exercise After ChemoTherapy (REACT) study

Caroline S Kampshoff, Mai J M Chinapaw, Johannes Brug, Jos W R Twisk, Goof Schep, Marten R Nijziel, Willem van Mechelen, Laurien M Buffart, Caroline S Kampshoff, Mai J M Chinapaw, Johannes Brug, Jos W R Twisk, Goof Schep, Marten R Nijziel, Willem van Mechelen, Laurien M Buffart

Abstract

Background: International evidence-based guidelines recommend physical exercise to form part of standard care for all cancer survivors. However, at present, the optimum exercise intensity is unclear. Therefore, we aimed to evaluate the effectiveness of a high intensity (HI) and low-to-moderate intensity (LMI) resistance and endurance exercise program compared with a wait list control (WLC) group on physical fitness and fatigue in a mixed group of cancer survivors who completed primary cancer treatment, including chemotherapy.

Methods: Overall, 277 cancer survivors were randomized to 12 weeks of HI exercise (n = 91), LMI exercise (n = 95), or WLC (n = 91). Both interventions were identical with respect to exercise type, duration and frequency, and only differed in intensity. Measurements were performed at baseline (4-6 weeks after primary treatment) and post-intervention. The primary outcomes were cardiorespiratory fitness (peakVO2), muscle strength (grip strength and 30-second chair-stand test), and self-reported fatigue (Multidimensional Fatigue Inventory; MFI). Secondary outcomes included health-related quality of life, physical activity, daily functioning, body composition, mood, and sleep disturbances. Multilevel linear regression analyses were performed to estimate intervention effects using an intention-to-treat principle.

Results: In the HI and LMI groups, 74 % and 70 % of the participants attended more than 80 % of the prescribed exercise sessions, respectively (P = 0.53). HI (β = 2.2; 95 % CI, 1.2-3.1) and LMI (β = 1.3; 95 % CI, 0.3-2.3) exercise showed significantly larger improvements in peakVO2 compared to WLC. Improvements in peakVO2 were larger for HI than LMI exercise (β = 0.9; 95 % CI, -0.1 to 1.9), but the difference was not statistically significant (P = 0.08). No intervention effects were found for grip strength and the 30-second chair-stand test. HI and LMI exercise significantly reduced general and physical fatigue and reduced activity (MFI subscales) compared to WLC, with no significant differences between both interventions. Finally, compared to WLC, we found benefits in global quality of life and anxiety after HI exercise, improved physical functioning after HI and LMI exercise, and less problems at work after LMI exercise.

Conclusions: Shortly after completion of cancer treatment, both HI and LMI exercise were safe and effective. There may be a dose-response relationship between exercise intensity and peakVO2, favoring HI exercise. HI and LMI exercise were equally effective in reducing general and physical fatigue.

Trial registration: This study was registered at the Netherlands Trial Register [ NTR2153 ] on the 5th of January 2010.

Figures

Fig. 1
Fig. 1
Patients flowchart of the REACT study. HI, High intensity exercise; LMI, Low-to-moderate intensity exercise; WLC, Wait list control group; PRO, Patient reported outcomes

References

    1. Jones LW, Liang Y, Pituskin EN, Battaglini CL, Scott JM, Hornsby WE, et al. Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist. 2011;16:112–20. doi: 10.1634/theoncologist.2010-0197.
    1. Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2012;11:CD006145.
    1. Mishra SI, Schrerer RW, Geigle PM, Berlanstein DR, Topaloglu O, Gotay CC, et al. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev. 2012;8:CD007566.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42:1409–26. doi: 10.1249/MSS.0b013e3181e0c112.
    1. Buffart LM, Galvao DA, Brug J, Chinapaw MJ, Newton RU. Evidence-based physical activity guidelines for cancer survivors: current guidelines, knowledge gaps and future research directions. Cancer Treat Rev. 2014;40(2):327–40. doi: 10.1016/j.ctrv.2013.06.007.
    1. Courneya KS, McKenzie DC, Mackey JR, Gelmon K, Friedenreich CM, Yasui Y, et al. Effects of exercise dose and type during breast cancer chemotherapy: multicenter randomized trial. J Natl Cancer Inst. 2013;105:1821–32. doi: 10.1093/jnci/djt297.
    1. Courneya KS, Segal RJ, Mackey JR, Gelmon K, Reid RD, Friedenreich CM, et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 2007;25:4396–404. doi: 10.1200/JCO.2006.08.2024.
    1. Burnham TR, Wilcox A. Effects of exercise on physiological and psychological variables in cancer survivors. Med Sci Sports Exerc. 2002;34:1863–7. doi: 10.1097/00005768-200212000-00001.
    1. Gibbs Z. Exercise for breast cancer patients with lymphedema. Australian New Zealand Clinical Trials Registry. 2012. . . Accessed 27 August 2015.
    1. Kampshoff CS, Buffart LM, Schep G, van Mechelen W, Brug J, Chinapaw MJ. Design of the Resistance and Endurance exercise After ChemoTherapy (REACT) study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of exercise interventions after chemotherapy on physical fitness and fatigue. BMC Cancer. 2010;10:658. doi: 10.1186/1471-2407-10-658.
    1. De Backer I, Schep G, Hoogeveen A, Vreugdenhil G, Kester AD, van Breda E. Exercise testing and training in a cancer rehabilitation program: the advantage of the steep ramp test. Arch Phys Med Rehabil. 2007;88:610–6. doi: 10.1016/j.apmr.2007.02.013.
    1. Karvonen J, Vuorimaa T. Heart rate and exercise intensity during sports activities. Practical application. Sports Med. 1988;5:303–11. doi: 10.2165/00007256-198805050-00002.
    1. Chinapaw MJ, Buffart LM, van Mechelen W, Schep G, Aaronson NK, van Harten WH, et al. Alpe d’HuZes Cancer Rehabilitation (A-CaRe) Research: four randomized controlled exercise trials and economic evaluations in cancer patients and survivors. Int J Behav Med. 2012;19:143–56. doi: 10.1007/s12529-011-9158-5.
    1. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122:191–225. doi: 10.1161/CIR.0b013e3181e52e69.
    1. Bohannon RW. Hand-grip dynamometry provides a valid indication of upper extremity strength impairment in home care patients. J Hand Ther. 1998;11:258–60. doi: 10.1016/S0894-1130(98)80021-5.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–9. doi: 10.1080/02701367.1999.10608028.
    1. Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Activity. 1999;7:129–61.
    1. Smets EM, Garssen B, Bonke B, de Haes JC. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39:315–25. doi: 10.1016/0022-3999(94)00125-O.
    1. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85:365–76. doi: 10.1093/jnci/85.5.365.
    1. Spinhoven P, Ormel J, Sloekers PP, Kempen GI, Speckens AE, van Hemert AM. A validation study of the Hospital Anxiety and Depression Scale (HADS) in different groups of Dutch subjects. Psychol Med. 1997;27:363–70. doi: 10.1017/S0033291796004382.
    1. Buysse DJ, Reynolds CF, III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Cardol M, Beelen A, van den Bos GA, De Jong BA, de Groot IJ, de Haan RJ. Responsiveness of the impact on participation and autonomy questionnaire. Arch Phys Med Rehabil. 2002;83:1524–9. doi: 10.1053/apmr.2002.35099.
    1. Washburn RA, Ficker JL. Physical Activity Scale for the Elderly (PASE): the relationship with activity measured by a portable accelerometer. J Sports Med Phys Fitness. 1999;39:336–40.
    1. Courneya KS, Friedenreich CM, Sela RA, Quinney HA, Rhodes RE. Correlates of adherence and contamination in a randomized controlled trial of exercise in cancer survivors: an application of the theory of planned behavior and the five factor model of personality. Ann Behav Med. 2002;24:257–68. doi: 10.1207/S15324796ABM2404_02.
    1. Buffart LM, De Backer IC, Schep G, Vreugdenhil A, Brug J, Chinapaw MJ. Fatigue mediates the relationship between physical fitness and quality of life in cancer survivors. J Sci Med Sport. 2013;16:99–104. doi: 10.1016/j.jsams.2012.05.014.
    1. Purcell A, Fleming J, Bennett S, Burmeister B, Haines T. Determining the minimal clinically important difference criteria for the Multidimensional Fatigue Inventory in a radiotherapy population. Support Care Cancer. 2010;18:307–15. doi: 10.1007/s00520-009-0653-z.
    1. Eekhout I, de Vet HC, Twisk JW, Brand JP, de Boer MR, Heymans MW. Missing data in a multi-item instrument were best handled by multiple imputation at the item score level. J Clin Epidemiol. 2014;67:335–42. doi: 10.1016/j.jclinepi.2013.09.009.
    1. Pollock ML. The quantification of endurance training programs. Exerc Sport Sci Rev. 1973;1:155–88.
    1. Schneider CM, Repka CP, Brown JM, Lalonde TL, Dallow KT, Barlow CE, et al. Demonstration of the need for cardiovascular and pulmonary normative data for cancer survivors. Int J Sports Med. 2014;35:1134–7. doi: 10.1055/s-0034-1375691.
    1. Herrero F, Balmer J, San Juan AF, Foster C, Fleck SJ, Perez M, et al. Is cardiorespiratory fitness related to quality of life in survivors of breast cancer? J Strength Cond Res. 2006;20:535–40.
    1. Schmid D, Leitzmann MF. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. Ann Oncol. 2015;26(2):272–8. doi: 10.1093/annonc/mdu250.
    1. Strasser B, Steindorf K, Wiskemann J, Ulrich CM. Impact of resistance training in cancer survivors: a meta-analysis. Med Sci Sports Exerc. 2013;45(11):2080–90. doi: 10.1249/MSS.0b013e31829a3b63.
    1. Lamers I, Kelchtermans S, Baert I, Feys P. Upper limb assessment in multiple sclerosis: a systematic review of outcome measures and their psychometric properties. Arch Phys Med Rehabil. 2014;95:1184–200. doi: 10.1016/j.apmr.2014.02.023.
    1. Baruth M, Wilcox S, Wegley S, Buchner DM, Ory MG, Phillips A, et al. Changes in physical functioning in the active living every day program of the active for life initiative(R) Int J Behav Med. 2011;18:199–208. doi: 10.1007/s12529-010-9108-7.
    1. de Araujo Ribeiro Alvares JB, Rodrigues R, de Azevedo FR, da Silva BG, Pinto RS, Vaz MA, et al. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys Ther Sport. 2015;16:59–65. doi: 10.1016/j.ptsp.2014.04.004.
    1. Dimeo F. Radiotherapy-related fatigue and exercise for cancer patients: a review of the literature and suggestions for future research. Front Radiat Ther Oncol. 2002;37:49–56. doi: 10.1159/000061299.
    1. Goedendorp MM, Gielissen MF, Verhagen CA, Bleijenberg G. Psychosocial interventions for reducing fatigue during cancer treatment in adults. Cochrane Database Syst Rev. 2009;1:CD006953.
    1. Osoba D, Rodrigues G, Myles J, Zee B, Pater J. Interpreting the significance of changes in health-related quality-of-life scores. J Clin Oncol. 1998;16:139–44.
    1. Buffart LM, Kalter J, Chinapaw MJ, Heymans MW, Aaronson NK, Courneya KS, et al. Predicting OptimaL cAncer RehabIlitation and Supportive care (POLARIS): rationale and design for meta-analyses of individual patient data of randomized controlled trials that evaluate the effect of physical activity and psychosocial interventions on health-related quality of life in cancer survivors. Syst Rev. 2013;2:75. doi: 10.1186/2046-4053-2-75.
    1. Craft LL, Vaniterson EH, Helenowski IB, Rademaker AW, Courneya KS. Exercise effects on depressive symptoms in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2012;21:3–19. doi: 10.1158/1055-9965.EPI-11-0634.
    1. Short CE, James EL, Stacey F, Plotnikoff RC. A qualitative synthesis of trials promoting physical activity behaviour change among post-treatment breast cancer survivors. J Cancer Surviv. 2013;7:570–81. doi: 10.1007/s11764-013-0296-4.
    1. Irwin ML, varez-Reeves M, Cadmus L, Mierzejewski E, Mayne ST, Yu H, et al. Exercise improves body fat, lean mass, and bone mass in breast cancer survivors. Obesity (Silver Spring) 2009;17:1534–41. doi: 10.1038/oby.2009.18.

Source: PubMed

3
購読する