The Role of Back Optic Zone Diameter in Myopia Control with Orthokeratology Lenses

Jaume Pauné, Silvia Fonts, Lina Rodríguez, Antonio Queirós, Jaume Pauné, Silvia Fonts, Lina Rodríguez, Antonio Queirós

Abstract

We compared the efficacy of controlling the annual increase in axial length (AL) in myopic Caucasian children based on two parameters: the back optic zone diameter (BOZD) of the orthokeratology (OK) lens and plus power ring diameter (PPRD) or mid-peripheral annular ring of corneal steepening. Data from 71 myopic patients (mean age, 13.34 ± 1.38 years; range, 10-15 years; 64% male) corrected with different BOZD OK lenses (DRL, Precilens) were collected retrospectively from a Spanish optometric clinic. The sample was divided into groups with BOZDs above or below 5.00 mm and the induced PPRD above or below 4.5 mm, and the relation to AL and refractive progression at 12 months was analyzed. Three subgroups were analyzed, i.e., plus power ring (PPR) inside, outside, or matching the pupil. The mean baseline myopia was -3.11 ± 1.46 D and the AL 24.65 ± 0.88 mm. Significant (p < 0.001) differences were found after 12 months of treatment in the refractive error and AL for the BOZD and PPRD. AL changes in subjects with smaller BOZDs decreased significantly regarding larger diameters (0.09 ± 0.12 and 0.15 ± 0.11 mm, respectively); in subjects with a horizontal sector of PPRD falling inside the pupil, the AL increased less (p = 0.035) than matching or outside the pupil groups by 0.04 ± 0.10 mm, 0.10 ± 0.11 mm, and 0.17 ± 0.12 mm, respectively. This means a 76% lesser AL growth or 0.13 mm/year in absolute reduction. OK corneal parameters can be modified by changing the OK lens designs, which affects myopia progression and AL elongation. Smaller BOZD induces a reduced PPRDs that slows AL elongation better than standard OK lenses. Further investigations should elucidate the effect of pupillary diameter, PPRD, and power change on myopia control.

Keywords: axial length; myopia progression; optic zone diameter; orthokeratology; pupillary diameter.

Conflict of interest statement

J.P. is the inventor of the DRL Orthokeratology lenses and has a commercial interest in it. The other authors do not have any proprietary or financial interest in any of the materials mentioned in this article.

Figures

Figure 1
Figure 1
A tangential topographic map shows the plus power ring (PPR) diameter analyzed in this study.
Figure 2
Figure 2
Distribution of subjects with more than 0.10 mm or less than 0.10 mm of AL change annually in relation to BOZDs higher or lower than 5.0 mm in diameter. A trend for more subjects with slower AL growth is seen in association with reduced BOZD. AL: axial lenght, L_BOZD: large back optic zone diameter, S_BOZD: small back optic zone diameter.
Figure 3
Figure 3
The correlation between the back optic zone diameter (BOZD) of the lenses and the plus power ring diameter (PPRD). The different PPRD sizes used in the study are represented by the mean values (blue squares), median values (flat lines), 1st and 3rd quartile interval boxes, and minimal and maximal values. The polynomial line shows the correlation between groups.
Figure 4
Figure 4
(A) The relative plus power ring diameter (PPRD)/pupillary effect for horizontal meridian to axial length (AL) at one year change. Vertical meridian PPRD and mean PPRD resulted in a very similar image. The group with a full effect (FE) had a pupillary diameter larger than the PPRD + 0.9 mm, the group with medium effect (ME) had a pupil between the PPRD ± 0.9, and the No Effect (NE) group had a pupillary diameter smaller than the PPRD − 0.9 mm. (B) The relative plus power ring diameter (PPRD)/pupillary effect for horizontal meridian related to spherical refraction (M) at 12 month increase. Vertical meridian PPRD and mean PPRD resulted in a very similar image and was not plotted. In figure A and B, a trend toward a dose-dependent PPRD is observed. The mean values are represented by small squares (blue); medians are shown by flat lines, 1st and 3rd quartile interval boxes; and the minimal and maximal values are plotted.

References

    1. Holden B.A., Fricke T.R., Wilson D.A., Jong M., Naidoo K.S., Sankaridurg P., Wong T.Y., Naduvilath T.J., Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–1042. doi: 10.1016/j.ophtha.2016.01.006.
    1. Dolgin E. The myopia boom. Nature. 2015;519:9–11. doi: 10.1038/519276a.
    1. Bourne R.R., Stevens G.A., White R.A., Smith J.L., Flaxman S.R., Price H., Jonas J.B., Keeffe J., Leasher J., Naidoo K. Causes of vision loss worldwide, 1990-2010: A systematic analysis. Lancet Glob. Health. 2013;1:339–349. doi: 10.1016/S2214-109X(13)70113-X.
    1. Holden B., Sankaridurg P., Smith E., Aller T., Jong M., He M. Myopia, an underrated global challenge to vision: Where the current data takes us on myopia control. Eye. 2014;28:142–146. doi: 10.1038/eye.2013.256.
    1. Flitcroft D.I. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog. Retin. Eye Res. 2012;31:622–660. doi: 10.1016/j.preteyeres.2012.06.004.
    1. Cheng D., Schmid K., Woo G., Drobe B. Randomized trial of effect of bifocal and prismatic bifocal spectacles on myopic progression: Two-year results. Arch. Ophthalmol. 2010;128:12–19. doi: 10.1001/archophthalmol.2009.332.
    1. Lam C.S.Y., Tang W.C., Tse D.Y., Lee R.P.K., Chun R.K.M., Hasegawa K., Qi H., Hatanaka T., To C.H. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: A 2-year randomised clinical trial. Br. J. Ophthalmol. 2020;104:363–368. doi: 10.1136/bjophthalmol-2018-313739.
    1. Aller T.A., Liu M., Wildsoet C.F. Myopia control with bifocal contact lenses. Optom. Vis. Sci. 2016;93:344–352. doi: 10.1097/OPX.0000000000000808.
    1. Pauné J., Morales H., Armengol J., Quevedo L., Faria-Ribeiro M., González-Méijome J.M. Myopia control with a novel peripheral gradient soft lens and orthokeratology: A 2-year clinical trial. Biomed Res. Int. 2015;2015:507572. doi: 10.1155/2015/507572.
    1. Cho P., Cheung S.-W.W. Retardation of myopia in orthokeratology (ROMIO) study: A 2-year randomized clinical trial. Investig. Ophthalmol. Vis. Sci. 2012;53:7077–7085. doi: 10.1167/iovs.12-10565.
    1. Santodomingo-Rubido J., Villa-Collar C., Gilmartin B., Gutierrez-Ortega R. Myopia control with orthokeratology contact lenses in Spain: Refractive and biometric changes. Investig. Ophthalmol. Vis. Sci. 2012;53:5060–5065. doi: 10.1167/iovs.11-8005.
    1. Hiraoka T., Kakita T., Okamoto F., Takahashi H., Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: A 5-year follow-up study. Investig. Ophthalmol. Vis. Sci. 2012;53:3913–3919. doi: 10.1167/iovs.11-8453.
    1. Huang J., Wen D., Wang Q., McAlinden C., Flitcroft I., Chen H., Saw S.M., Chen H., Bao F., Zhao Y., et al. Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis. Ophthalmology. 2016;123:697–708. doi: 10.1016/j.ophtha.2015.11.010.
    1. Reinstein D.D.Z., Gobbe M., Archer T.J., Couch D., Bloom B. Epithelial, stromal, and corneal pachymetry changes during orthokeratology. Optom. Vis. Sci. 2009;86:1006–1014. doi: 10.1097/OPX.0b013e3181b18219.
    1. Queiros A., Gonzalez-Meijome J.M., Villa-Collar C., Gutierrez A.R., Jorge J. Local steepening in peripheral corneal curvature after corneal refractive therapy and LASIK. Optom. Vis. Sci. 2010;87:432–439. doi: 10.1097/OPX.0b013e3181da8628.
    1. Smith E.L. Prentice Award Lecture 2010: A case for peripheral optical treatment strategies for myopia. Optom. Vis. Sci. 2011;88:1029–1044. doi: 10.1097/OPX.0b013e3182279cfa.
    1. Lau J.K., Vincent S.J., Collins M.J., Cheung S.W., Cho P. Ocular higher-order aberrations and axial eye growth in young Hong Kong children. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-24906-x.
    1. Hiraoka T., Kakita T., Okamoto F., Oshika T. Influence of ocular wavefront aberrations on axial length elongation in myopic children treated with overnight orthokeratology. Ophthalmology. 2015;122:1–8. doi: 10.1016/j.ophtha.2014.07.042.
    1. Kim J., Lim D.H., Han S.H., Chung T.-Y.Y. Predictive factors associated with axial length growth and myopia progression in orthokeratology. PLoS ONE. 2019;14:1–12. doi: 10.1371/journal.pone.0218140.
    1. Wang A., Yang C. Influence of overnight orthokeratology lens treatment zone decentration on myopia progression. J. Ophthalmol. 2019;2019:2596953. doi: 10.1155/2019/2596953.
    1. Zhong Y., Chen Z., Xue F., Zhou J., Niu L., Zhou X. Corneal power change is predictive of myopia progression in orthokeratology. Optom. Vis. Sci. 2014;91:404–411. doi: 10.1097/OPX.0000000000000183.
    1. González-Méijome J.M., Faria-Ribeiro M.A., Lopes-Ferreira D.P., Fernandes P., Carracedo G., Queiros A. Changes in peripheral refractive profile after orthokeratology for different degrees of myopia. Curr. Eye Res. 2016;41:199–207. doi: 10.3109/02713683.2015.1009634.
    1. Queirós A., Lopes-Ferreira D., Yeoh B., Issacs S., Amorim-De-Sousa A., Villa-Collar C., González-Méijome J. Refractive, biometric and corneal topographic parameter changes during 12 months of orthokeratology. Clin. Exp. Optom. 2020;103:454–462.
    1. Queirós A., González-Méijome J.M., Jorge J., Villa-Collar C., Gutiérrez A.R. Peripheral refraction in myopic patients after orthokeratology. Optom. Vis. Sci. 2010;87:323–329. doi: 10.1097/OPX.0b013e3181d951f7.
    1. Queirós A., Amorim-de-Sousa A., Lopes-Ferreira D., Villa-Collar C., Gutiérrez Á.R., González-Méijome J.M. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery. Eye Vis. 2018;5:12. doi: 10.1186/s40662-018-0106-1.
    1. Wang J., Yang D., Bi H., Du B., Lin W., Gu T., Zhang B., Wei R. A new method to analyze the relative corneal refractive power and its association to myopic progression control with orthokeratology. Transl. Vis. Sci. Technol. 2018;7:17. doi: 10.1167/tvst.7.6.17.
    1. Kang P., Gifford P., Swarbrick H. Can manipulation of orthokeratology lens parameters modify peripheral refraction? Optom. Vis. Sci. 2013;90:1237–1248. doi: 10.1097/OPX.0000000000000064.
    1. Kang P., Swarbrick H. The influence of different ok lens designs on peripheral refraction. Optom. Vis. Sci. 2016;93:1–8. doi: 10.1097/OPX.0000000000000889.
    1. Marcotte-Collard R., Simard P., Michaud L. Analysis of two orthokeratology lens designs and comparison of their optical effects on the cornea. Eye Contact Lens. 2018;44:1. doi: 10.1097/ICL.0000000000000495.
    1. Yang X., Bi H., Li L., Li S., Chen S., Zhang B., Wang Y. The effect of relative corneal refractive power shift distribution on axial length growth in myopic children undergoing orthokeratology treatment. Curr. Eye Res. 2020;18:1–9. doi: 10.1080/02713683.2020.1820528.
    1. Carracedo G., Espinosa-Vidal T.M., Martínez-Alberquilla I., Batres L. The topographical effect of optical zone diameter in orthokeratology contact lenses in high myopes. J. Ophthalmol. 2019;2019:1082472. doi: 10.1155/2019/1082472.
    1. Gifford P., Tran M., Priestley C., Maseedupally V., Kang P. Reducing treatment zone diameter in orthokeratology and its effect on peripheral ocular refraction. Contact Lens Anterior Eye. 2019;43:54–59. doi: 10.1016/j.clae.2019.11.006.
    1. Queirós A., González-Méijome J., Jorge J. Influence of fogging lenses and cycloplegia on open-field automatic refraction. Ophthalmic Physiol. Opt. 2008;28:387–392. doi: 10.1111/j.1475-1313.2008.00579.x.
    1. Şimşek A., Bilak Ş., Güler M., Çapkin M., Bilgin B., Reyhan A.H. Comparison of central corneal thickness measurements obtained by RTVue OCT, Lenstar, Sirius topography, and ultrasound pachymetry in healthy subjects. Semin. Ophthalmol. 2016;31:467–472. doi: 10.3109/08820538.2014.962173.
    1. Chui W.S., Cho P. A comparative study of the performance of different corneal topographers on children with respect to orthokeratology practice. Optom. Vis. Sci. 2005;82:420–427. doi: 10.1097/01.OPX.0000162642.24885.71.
    1. Periman L.M., Ambrosio R., Jr., Harrison D.A., Wilson S.E. Correlation of pupil sizes measured with a mesopic infrared pupillometer and a photopic topographer. J Refract. Surg. 2003;19:555–559.
    1. Walline J.J., Walker M.K., Mutti D.O., Jones-Jordan L.A., Sinnott L.T., Giannoni A.G., Bickle K.M., Schulle K.L., Nixon A., Pierce G.E., et al. Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children: The BLINK Randomized Clinical Trial. JAMA. 2020;324:571–580. doi: 10.1001/jama.2020.10834.
    1. Sun Y., Xu F., Zhang T., Liu M., Wang D., Chen Y., Liu Q. Orthokeratology to control myopia progression: A meta-analysis. PLoS ONE. 2015;10:e0124535.
    1. Brennan N.A., Toubouti M.Y., Cheng X., Bullimore M.A. Efficacy in myopia control. Prog. Retin. Eye Res. 2020:100923. doi: 10.1016/j.preteyeres.2020.100923.
    1. Chen Z., Niu L., Xue F. Impact of pupil diameter on axial growth. Optom. Vis. Sci. 2012;89:1636–1640. doi: 10.1097/OPX.0b013e31826c1831.
    1. Faria-Ribeiro M., Navarro R., González-Méijome J.M. Effect of pupil size on wavefront refraction during orthokeratology. Optom. Vis. Sci. 2016;93:1399–1408. doi: 10.1097/OPX.0000000000000989.
    1. Smith E.L., Hung L.F. The role of optical defocus in regulating refractive development in infant monkeys. Vis. Res. 1999;39:1415–1435. doi: 10.1016/S0042-6989(98)00229-6.
    1. Benavente-Perez A., Nour A., Troilo D. The effect of simultaneous negative and positive defocus on eye growth and development of refractive state in marmosets. Investig. Ophthalmol. Vis. Sci. 2012;53:6479–6487. doi: 10.1167/iovs.12-9822.
    1. Hiraoka T., Kotsuka J., Kakita T., Okamoto F., Oshika T. Relationship between higher-order wavefront aberrations and natural progression of myopia in schoolchildren. Sci. Rep. 2017;7:7876. doi: 10.1038/s41598-017-08177-6.
    1. Koch D.D., Samuelson S.W., Haft E.A., Merin L.M. Pupillary size and responsiveness. Implications for selection of a bifocal intraocular lens. Ophthalmology. 1991;98:1030–1035. doi: 10.1016/S0161-6420(91)32181-X.
    1. Cardona G., López S. Pupil diameter, working distance, and illumination during habitual tasks. Implications for simultaneous vision contact lenses for presbyopia. J. Optom. 2016;9:78–84. doi: 10.1016/j.optom.2015.06.005.
    1. Hsieh Y.T., Hu F.R. The correlation of pupil size measured by Colvard pupillometer and Orbscan II. J Refract. Surg. 2007;8:789–795. doi: 10.3928/1081-597X-20071001-08.
    1. Tan Q., Ng A.L., Cheng G.P., Woo V.C., Cho P. Repeatability of pupil size measurements with NIDEK OPD-Scan III in myopic children. Ophthalmic Physiol. Opt. 2020 doi: 10.1111/opo.12774.
    1. Jones L.A., Mitchell G.L., Mutti D.O., Hayes J.R., Moeschberger M.L., Zadnik K. Comparison of ocular component growth curves among refractive error groups in children. Investig. Ophthalmol. Vis. Sci. 2005;46:2317–2327. doi: 10.1167/iovs.04-0945.
    1. Alfonso J.F., Ferrer-Blasco T., González-Méijome J.M., García-Manjarres M., Peixoto-de-Matos S.C., Montés-Micó R. Pupil size, white-to-white corneal diameter, and anterior chamber depth in patients with myopia. J. Refract. Surg. 2010;26:891–898. doi: 10.3928/1081597X-20091209-07.
    1. Chen Z., Xue F., Zhou J., Qu X., Zhou X. Prediction of orthokeratology lens decentration with corneal elevation. Optom. Vis. Sci. 2017;94:903–907. doi: 10.1097/OPX.0000000000001109.
    1. Chen R., Chen Y., Lipson M., Kang P., Lian H., Zhao Y., McAlinden C., Huang J. The effect of treatment zone decentration on myopic progression during orthokeratology. Curr. Eye Res. 2020;45:645–651. doi: 10.1080/02713683.2019.1673438.
    1. Mutti D.O., Hayes J.R., Mitchell G.L., Jones L.A., Moeschberger M.L., Cotter S.A., Kleinstein R.N., Manny R.E., Twelker J.D., Zadnik K. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2007;48:2510–2519. doi: 10.1167/iovs.06-0562.
    1. Gwiazda J., Hyman L., Hussein M., Everett D., Norton T.T., Kurtz D., Leske M.C., Manny R., Marsh-Tootle W., Scheiman M. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Investig. Ophthalmol. Vis. Sci. 2003;44:1492–1500. doi: 10.1167/iovs.02-0816.
    1. Kurtz D., Manny R., Hussein M. Variability of the ocular component measurements in children using A-scan ultrasonography. Optom. Vis. Sci. 2004;81:35–43. doi: 10.1097/00006324-200401000-00008.
    1. Cho P., Cheung S., Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: A pilot study on refractive changes and myopic control. Curr. Eye Res. 2005;30:71–80. doi: 10.1080/02713680590907256.
    1. Chen Z., Xue F., Zhou J., Qu X., Zhou X. Effects of orthokeratology on choroidal thickness and axial length. Optom. Vis. Sci. 2016;93:1064–1071. doi: 10.1097/OPX.0000000000000894.

Source: PubMed

3
購読する