The Human Skin Volatolome: A Systematic Review of Untargeted Mass Spectrometry Analysis

Anuja Mitra, Sunyoung Choi, Piers R Boshier, Alexandra Razumovskaya-Hough, Ilaria Belluomo, Patrik Spanel, George B Hanna, Anuja Mitra, Sunyoung Choi, Piers R Boshier, Alexandra Razumovskaya-Hough, Ilaria Belluomo, Patrik Spanel, George B Hanna

Abstract

The analysis of volatile organic compounds (VOCs) can provide important clinical information (entirely non-invasively); however, the exact extent to which VOCs from human skin can be signatures of health and disease is unknown. This systematic review summarises the published literature concerning the methodology, application, and volatile profiles of skin VOC studies. An online literature search was conducted in accordance with the preferred reporting items for systematic reviews and meta-analysis, to identify human skin VOC studies using untargeted mass spectrometry (MS) methods. The principal outcome was chemically verified VOCs detected from the skin. Each VOC was cross-referenced using the CAS number against the Human Metabolome and KEGG databases to evaluate biological origins. A total of 29 studies identified 822 skin VOCs from 935 participants. Skin VOCs were commonly sampled from the hand (n = 9) or forearm (n = 7) using an absorbent patch (n = 15) with analysis by gas chromatography MS (n = 23). Twenty-two studies profiled the skin VOCs of healthy subjects, demonstrating a volatolome consisting of aldehydes (18%), carboxylic acids (12%), alkanes (12%), fatty alcohols (9%), ketones (7%), benzenes and derivatives (6%), alkenes (2%), and menthane monoterpenoids (2%). Of the VOCs identified, 13% had putative endogenous origins, 46% had tentative exogenous origins, and 40% were metabolites from mixed metabolic pathways. This review has comprehensively profiled the human skin volatolome, demonstrating the presence of a distinct VOC signature of healthy skin, which can be used as a reference for future researchers seeking to unlock the clinical potential of skin volatolomics. As significant proportions of identified VOCs have putative exogenous origins, strategies to minimise their presence through methodological refinements and identifying confounding compounds are discussed.

Keywords: exogenous compounds; healthy human volatolome; mass spectrometry; skin; translational science; volatile organic compounds.

Conflict of interest statement

The authors declare no conflict of interest. G.B.H is a founder of a cancer diagnostics company. I.B, P.R.B and G.B.H are named on patents related to volatile biomarkers.

Figures

Figure 1
Figure 1
PRISMA flow chart of literature.
Figure 2
Figure 2
The composition of the human skin volatolome in health and disease. (a) The composition of the skin volatolome from the top eight chemical classes from (i) healthy skin, (ii) infected skin, (iii) participants with melanoma, and (iv) patients with mixed visceral adenocarcinoma. (b) Percentage change in the skin VOC profile normalised to the healthy skin profile in a range of disease states.
Figure 3
Figure 3
The putative biological origins of skin volatile organic compounds emitted from human skin. The putative biological origins of the compounds representing the healthy human skin volatolome, grouped into endogenous, exogenous, and mixed origins. The most common compounds in each category are included; n represents the number of papers each compound was identified in.

References

    1. Drabińska N., Flynn C., Ratcliffe N., Belluomo I., Myridakis A., Gould O., Fois M., Smart A., Devine T., Costello B.P.J.D.L. A literature survey of all volatiles from healthy human breath and bodily fluids: The human volatilome. J. Breath Res. 2021;15:034001. doi: 10.1088/1752-7163/abf1d0.
    1. Shirasu M., Touhara K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011;150:257–266. doi: 10.1093/jb/mvr090.
    1. Adam M.E., Fehervari M., Boshier P.R., Chin S.-T., Lin G.-P., Romano A., Kumar S., Hanna G.B. Mass-Spectrometry Analysis of Mixed-Breath, Isolated-Bronchial-Breath, and Gastric-Endoluminal-Air Volatile Fatty Acids in Esophagogastric Cancer. Anal. Chem. 2019;91:3740–3746. doi: 10.1021/acs.analchem.9b00148.
    1. De Lacy Costello B., Amann A., Al-Kateb H., Flynn C., Filipiak W., Khalid T., Osborne D., Ratcliffe N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014;8:14001. doi: 10.1088/1752-7155/8/1/014001.
    1. Amann A., Costello B.D.L., Miekisch W., Schubert J., Buszewski B., Pleil J., Ratcliffe N., Risby T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014;8:034001. doi: 10.1088/1752-7155/8/3/034001.
    1. Gallagher M., Wysocki C., Leyden J., Spielman A., Sun X., Preti G. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 2008;159:780–791. doi: 10.1111/j.1365-2133.2008.08748.x.
    1. Duffy E., Morrin A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. TrAC Trends Anal. Chem. 2018;111:163–172. doi: 10.1016/j.trac.2018.12.012.
    1. Curran A.M., Rabin S.I., Prada P.A., Furton K.G. Comparison of the Volatile Organic Compounds Present in Human Odor Using Spme-GC/MS. J. Chem. Ecol. 2005;31:1607–1619. doi: 10.1007/s10886-005-5801-4.
    1. Ashrafi M., Novak-Frazer L., Bates M., Baguneid M., Alonso-Rasgado T., Xia G., Rautemaa-Richardson R., Bayat A. Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci. Rep. 2018;8:9431. doi: 10.1038/s41598-018-27504-z.
    1. Ruzsanyi V., Wiesenhofer H., Ager C., Herbig J., Aumayr G., Fischer M., Renzler M., Ussmueller T., Lindner K., Mayhew C. A portable sensor system for the detection of human volatile compounds against transnational crime. Sens. Actuators B Chem. 2020;328:129036. doi: 10.1016/j.snb.2020.129036.
    1. Wooding M., Rohwer E.R., Naude Y. Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GCxGC-TOFMS. [(accessed on 5 February 2022)];Anal. Bioanal. Chem. 2020 412:5759–5777. doi: 10.1007/s00216-020-02799-y. Available online: .
    1. Steinemann A. The fragranced products phenomenon: Air quality and health, science and policy. Air Qual. Atmos. Health. 2020;14:235–243. doi: 10.1007/s11869-020-00928-1.
    1. Morimoto J., Rosso M.C., Kfoury N., Bicchi C., Cordero C., Robbat J.A. Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome. Molecules. 2019;24:3757. doi: 10.3390/molecules24203757.
    1. Kimura K., Sekine Y., Furukawa S., Takahashi M., Oikawa D. Measurement of 2-nonenal and diacetyl emanating from human skin surface employing passive flux sampler—GCMS system. J. Chromatogr. B. 2016;1028:181–185. doi: 10.1016/j.jchromb.2016.06.021.
    1. Martin H.J., Reynolds J.C., Riazanskaia S., Thomas C.L.P. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry. Analyst. 2014;139:4279–4286. doi: 10.1039/C4AN00134F.
    1. Sinclair E., Walton-Doyle C., Sarkar D., Hollywood K.A., Milne J., Lim S.H., Kunath T., Rijs A.M., de Bie R.M.A., Silverdale M., et al. Validating Differential Volatilome Profiles in Parkinson’s Disease. ACS Central Sci. 2021;7:300–306. doi: 10.1021/acscentsci.0c01028.
    1. Trivedi D.K., Sinclair E., Xu Y., Sarkar D., Walton-Doyle C., Liscio C., Banks P., Milne J., Silverdale M., Kunath T., et al. Discovery of Volatile Biomarkers of Parkinson’s Disease from Sebum. ACS Central Sci. 2019;5:599–606. doi: 10.1021/acscentsci.8b00879.
    1. Monedeiro F., dos Reis R.B., Peria F.M., Sares C.T.G., De Martinis B.S. Investigation of sweat VOC profiles in assessment of cancer biomarkers using HS-GC-MS. J. Breath Res. 2019;14:026009. doi: 10.1088/1752-7163/ab5b3c.
    1. Ashrafi M., Xu Y., Muhamadali H., White I., Wilkinson M., Hollywood K., Baguneid M., Goodacre R., Bayat A. A microbiome and metabolomic signature of phases of cutaneous healing identified by profiling sequential acute wounds of human skin: An exploratory study. PLoS ONE. 2020;15:e0229545. doi: 10.1371/journal.pone.0229545.
    1. Vishinkin R., Busool R., Mansour E., Fish F., Esmail A., Kumar P., Gharaa A., Cancilla J.C., Torrecilla J.S., Skenders G., et al. Profiles of Volatile Biomarkers Detect Tuberculosis from Skin. Adv. Sci. 2021;8:2100235. doi: 10.1002/advs.202100235.
    1. Roodt A.P., Naude Y., Stoltz A., Rohwer E. Human skin volatiles: Passive sampling and GCxGC-ToFMS analysis as a tool to investigate the skin microbiome and interactions with anthropophilic mosquito disease vectors. [(accessed on 5 February 2022)];J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2018 1097–1098:83–93. doi: 10.1016/j.jchromb.2018.09.002. Available online: .
    1. Grabowska-Polanowska B., Miarka P., Skowron M., Sułowicz J., Wojtyna K., Moskal K., Śliwka I. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin. Bioanalysis. 2017;9:1465–1475. doi: 10.4155/bio-2017-0128.
    1. Duffy E., Jacobs M., Kirby B., Morrin A. Probing skin physiology through the volatile footprint: Discriminating volatile emissions before and after acute barrier disruption. Exp. Dermatol. 2017;26:919–925. doi: 10.1111/exd.13344.
    1. Mochalski P., Unterkofler K., Hinterhuber H., Amann A. Monitoring of Selected Skin-Borne Volatile Markers of Entrapped Humans by Selective Reagent Ionization Time of Flight Mass Spectrometry in NO+ Mode. Anal. Chem. 2014;86:3915–3923. doi: 10.1021/ac404242q.
    1. Prada P.A., Curran A.M., Furton K.G. The Evaluation of Human Hand Odor Volatiles on Various Textiles: A Comparison Between Contact and Noncontact Sampling Methods *,†. J. Forensic Sci. 2011;56:866–881. doi: 10.1111/j.1556-4029.2011.01762.x.
    1. Doležal P., Kyjaková P., Valterová I., Urban Š. Qualitative analyses of less-volatile organic molecules from female skin scents by comprehensive two dimensional gas chromatography-time of flight mass spectrometry. J. Chromatogr. A. 2017;1505:77–86. doi: 10.1016/j.chroma.2017.04.062.
    1. Bernier U.R., Kline D.L., Barnard D.R., Schreck C.E., Yost R.A. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti) Anal. Chem. 2000;72:747–756. doi: 10.1021/ac990963k.
    1. Kusano M., Mendez E., Furton K.G. Comparison of the Volatile Organic Compounds from Different Biological Specimens for Profiling Potential*. J. Forensic Sci. 2012;58:29–39. doi: 10.1111/j.1556-4029.2012.02215.x.
    1. Broza Y.Y., Zuri L., Haick H. Combined Volatolomics for Monitoring of Human Body Chemistry. Sci. Rep. 2014;4:4611. doi: 10.1038/srep04611.
    1. Curran A.M., Ramirez C.F., Schoon A.A., Furton K.G. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J. Chromatogr. B. 2007;846:86–97. doi: 10.1016/j.jchromb.2006.08.039.
    1. Zhang Z.-M., Cai J.-J., Ruan G.-H., Li G.-K. The study of fingerprint characteristics of the emanations from human arm skin using the original sampling system by SPME-GC/MS. J. Chromatogr. B. 2005;822:244–252. doi: 10.1016/j.jchromb.2005.06.026.
    1. Turner C., Parekh B., Walton C., Smith D., Evans M., Španěl P. An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2008;22:526–532. doi: 10.1002/rcm.3402.
    1. Martin H.J., Turner M.A., Bandelow S., Edwards L., Riazanskaia S., Thomas C.L.P. Volatile organic compound markers of psychological stress in skin: A pilot study. J. Breath Res. 2016;10:046012. doi: 10.1088/1752-7155/10/4/046012.
    1. Verhulst N.O., Weldegergis B.T., Menger D., Takken W. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Sci. Rep. 2016;6:27141. doi: 10.1038/srep27141.
    1. Dormont L., Bessière J.-M., McKey D., Cohuet A. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human/pathogen/vector interactions. J. Exp. Biol. 2013;216:2783–2788. doi: 10.1242/jeb.085936.
    1. Ruzsanyi V., Mochalski P., Schmid A., Wiesenhofer H., Klieber M., Hinterhuber H., Amann A. Ion mobility spectrometry for detection of skin volatiles. J. Chromatogr. B. 2012;911:84–92. doi: 10.1016/j.jchromb.2012.10.028.
    1. Thomas A., Riazanskaia S., Cheung W., Xu Y., Goodacre R., Thomas C.L.P., Baguneid M., Bayat A. Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound Repair Regen. 2010;18:391–400. doi: 10.1111/j.1524-475X.2010.00592.x.
    1. Haze S., Gozu Y., Nakamura S., Kohno Y., Sawano K., Ohta H., Yamazaki K. 2-Nonenal Newly Found in Human Body Odor Tends to Increase with Aging. J. Investig. Dermatol. 2001;116:520–524. doi: 10.1046/j.0022-202x.2001.01287.x.
    1. Meijerink J., Braks M.A.H., Brack A.A., Adam W., Dekker T., Posthumus M.A., Van Beek T.A., Van Loon J.J.A. Identification of Olfactory Stimulants for Anopheles gambiae from Human Sweat Samples. J. Chem. Ecol. 2000;26:1367–1382. doi: 10.1023/A:1005475422978.
    1. Mochalski P., Wiesenhofer H., Allers M., Zimmermann S., Güntner A.T., Pineau N.J., Lederer W., Agapiou A., Mayhew C.A., Ruzsanyi V. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS) J. Chromatogr. B. 2018;1076:29–34. doi: 10.1016/j.jchromb.2018.01.013.
    1. Jiang R., Cudjoe E., Bojko B., Abaffy T., Pawliszyn J. A non-invasive method for in vivo skin volatile compounds sampling. Anal. Chim. Acta. 2013;804:111–119. doi: 10.1016/j.aca.2013.09.056.
    1. Abaffy T., Duncan R., Riemer D.D., Tietje O., Elgart G., Milikowski C., DeFazio R.A. Differential Volatile Signatures from Skin, Naevi and Melanoma: A Novel Approach to Detect a Pathological Process. PLoS ONE. 2010;5:e13813. doi: 10.1371/journal.pone.0013813.
    1. Markar S.R., Wiggins T., Antonowicz S., Chin S., Romano A., Nikolic K., Evans B., Cunningham D., Mughal M., Lagergren J., et al. Assessment of a Noninvasive Exhaled Breath Test for the Diagnosis of Oesophagogastric Cancer. JAMA Oncol. 2018;4:970–976. doi: 10.1001/jamaoncol.2018.0991.
    1. Wen Q., Boshier P., Myridakis A., Belluomo I., Hanna G.B. Urinary Volatile Organic Compound Analysis for the Diagnosis of Cancer: A Systematic Literature Review and Quality Assessment. Metabolites. 2020;11:17. doi: 10.3390/metabo11010017.
    1. Cruz A.L.S., Barreto E.D.A., Fazolini N.P.B., Viola J.P.B., Bozza P.T. Lipid droplets: Platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020;11:105. doi: 10.1038/s41419-020-2297-3.
    1. Marchitti S.A., Brocker C., Stagos D., Vasiliou V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin. Drug Metab. Toxicol. 2008;4:697–720. doi: 10.1517/17425255.4.6.697.
    1. Antonowicz S., Bodai Z., Wiggins T., Markar S.R., Boshier P.R., Goh Y.M., Hanna G.B. Endogenous aldehyde accumulation generates genotoxicity and exhaled biomarkers in esophageal adenocarcinoma. [(accessed on 11 October 2021)];Nat. Commun. 2021 12:1454. doi: 10.1038/s41467-021-21800-5. Available online: .
    1. Waris G., Ahsan H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog. 2006;5:14. doi: 10.1186/1477-3163-5-14.
    1. Liou G.Y., Storz P. Reactive oxygen species in cancer. [(accessed on 20 April 2021)];Free Radic. Res. 2010 44:479–496. doi: 10.3109/10715761003667554. Available online: .
    1. Ratcliffe N., Wieczorek T., Drabińska N., Gould O., Osborne A., Costello B.P.J.D.L. A mechanistic study and review of volatile products from peroxidation of unsaturated fatty acids: An aid to understanding the origins of volatile organic compounds from the human body. J. Breath Res. 2020;14:034001. doi: 10.1088/1752-7163/ab7f9d.
    1. Butler L.M., Perone Y., Dehairs J., Lupien L.E., de Laat V., Talebi A., Loda M., Kinlaw W.B., Swinnen J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 2020;159:245–293. doi: 10.1016/j.addr.2020.07.013.
    1. Woodfield G., Belluomo I., Boshier P.R., Waller A., Fayyad M., von Wagner C., Cross A.J., Hanna G.B. Feasibility and acceptability of breath research in primary care: A prospective, cross-sectional, observational study. BMJ Open. 2021;11:e044691. doi: 10.1136/bmjopen-2020-044691.
    1. Salman D., Ibrahim W., Kanabar A., Joyce A., Zhao B., Singapuri A., Wilde M., Cordell R.L., McNally T., Ruszkiewicz D.M., et al. The variability of volatile organic compounds in the indoor air of clinical environments. J. Breath Res. 2022;16:016005. doi: 10.1088/1752-7163/ac3565.
    1. HMDB The Human Metabolome Database [Internet] [(accessed on 28 April 2022)]. Available online:
    1. FooDB [(accessed on 28 April 2022)]. Available online: .
    1. McDonnell G., Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. [(accessed on 4 May 2022)];Clin. Microbiol. Rev. 1999 12:147–179. doi: 10.1128/CMR.12.1.147. Available online: .
    1. Lu C., Wang X., Dong S., Zhang J., Li J., Zhao Y., Liang Y., Xue L., Xie H., Zhang Q., et al. Emissions of fine particulate nitrated phenols from various on-road vehicles in China. Environ. Res. 2019;179:108709. doi: 10.1016/j.envres.2019.108709.
    1. Han J., Meng J., Chen S., Li C. Integrative analysis of the gut microbiota and metabolome in rats treated with rice straw biochar by 16S rRNA gene sequencing and LC/MS-based metabolomics. Sci. Rep. 2019;9:17860. doi: 10.1038/s41598-019-54467-6.
    1. Gaude E., Nakhleh M.K., Patassini S., Boschmans J., Allsworth M., Boyle B., van der Schee M.P. Targeted breath analysis: Exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probes. J. Breath Res. 2019 May 17;13:032001. doi: 10.1088/1752-7163/ab1789.
    1. Kuhn F., Natsch A. Body odour of monozygotic human twins: A common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. J. R. Soc. Interface. 2008;6:377–392. doi: 10.1098/rsif.2008.0223.

Source: PubMed

3
購読する