Potential Application of Whole Body Vibration Exercise For Improving The Clinical Conditions of COVID-19 Infected Individuals: A Narrative Review From the World Association of Vibration Exercise Experts (WAVex) Panel

Borja Sañudo, Adérito Seixas, Rainer Gloeckl, Jörn Rittweger, Rainer Rawer, Redha Taiar, Eddy A van der Zee, Marieke J G van Heuvelen, Ana Cristina Lacerda, Alessandro Sartorio, Michael Bemben, Darryl Cochrane, Trentham Furness, Danúbia de Sá-Caputo, Mario Bernardo-Filho, Borja Sañudo, Adérito Seixas, Rainer Gloeckl, Jörn Rittweger, Rainer Rawer, Redha Taiar, Eddy A van der Zee, Marieke J G van Heuvelen, Ana Cristina Lacerda, Alessandro Sartorio, Michael Bemben, Darryl Cochrane, Trentham Furness, Danúbia de Sá-Caputo, Mario Bernardo-Filho

Abstract

COVID-19 is a highly infectious respiratory disease which leads to several clinical conditions related to the dysfunction of the respiratory system along with other physical and psychological complaints. Severely affected patients are referred to intensive care units (ICUs), limiting their possibilities for physical exercise. Whole body vibration (WBV) exercise is a non-invasive, physical therapy, that has been suggested as part of the procedures involved with pulmonary rehabilitation, even in ICU settings. Therefore, in the current review, the World Association of Vibration Exercise Experts (WAVEX) reviewed the potential of WBV exercise as a useful and safe intervention for the management of infected individuals with COVID-19 by mitigating the inactivity-related declines in physical condition and reducing the time in ICU. Recommendations regarding the reduction of fatigue and the risk of dyspnea, the improvement of the inflammatory and redox status favoring cellular homeostasis and the overall improvement in the quality of life are provided. Finally, practical applications for the use of this paradigm leading to a better prognosis in bed bound and ICU-bound subjects is proposed.

Keywords: COVID-19; SARS-CoV-2; coronavirus; whole body vibration exercise.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Conventional squat exercise on a WBV platform [54].
Figure 2
Figure 2
(A): WBV exercise in conscious but bed-bound ICU patients. Tilt ICU bed up to 30° and fix WBV platform at the end of the bed. Knees should be slightly bended for about 10°. Considerable muscle contractions at the calf and thigh muscles should be noticed by the patient (figure adapted from [44]). (B): WBV exercise in unconscious bed-bound ICU patients. Fix the legs with a strap to get pressure on the platform. Flex knees and hip for about 20°. Considerable muscle contractions at the calf and thigh muscles should be noticeable by a therapist (figure adapted from [13]).

References

    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (covid-19) outbreak in china: Summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to covid-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:1–3. doi: 10.1007/s00134-020-05991-x.
    1. Zuo M., Huang Y., Ma W., Xue Z., Zhang J., Gong Y. Expert recommendations for tracheal intubation in critically ill patients with noval coronavirus disease 2019. Chin. Med. Sci. J. 2020:10. doi: 10.24920/003724.
    1. Zhou D., Dai S.-M., Tong Q. Covid-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J. Antimicrob. Chemother. 2020 doi: 10.1093/jac/dkaa114.
    1. Sun P., Qie S., Liu Z., Ren J., Li K., Xi J. Clinical characteristics of hospitalized patients with sars-cov-2 infection: A single arm meta-analysis. J. Med. Virol. 2020;92:612–617. doi: 10.1002/jmv.25735.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. Wang Z., Yang B., Li Q., Wen L., Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in wuhan, china. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa272.
    1. Jin Y.-H., Cai L., Cheng Z.-S., Cheng H., Deng T., Fan Y.-P., Fang C., Huang D., Huang L.-Q., Huang Q. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version) Mil. Med. Res. 2020;7:4. doi: 10.1186/s40779-020-0233-6.
    1. Chen P., Mao L., Nassis G.P., Harmer P., Ainsworth B.E., Li F. Coronavirus disease (covid-19): The need to maintain regular physical activity while taking precautions. J. Sport Health Sci. 2020;9:103–104. doi: 10.1016/j.jshs.2020.02.001.
    1. Haskell W.L., Lee I.-M., Pate R.R., Powell K.E., Blair S.N., Franklin B.A., Macera C.A., Heath G.W., Thompson P.D., Bauman A. Physical activity and public health: Updated recommendation for adults from the american college of sports medicine and the american heart association. Med. Sci. Sports Exerc. 2007;39:1423–1434. doi: 10.1249/mss.0b013e3180616b27.
    1. Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.-M., Nieman D.C., Swain D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011;43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Brown W.M., Davison G.W., McClean C.M., Murphy M.H. A systematic review of the acute effects of exercise on immune and inflammatory indices in untrained adults. Sports Med. -Open. 2015;1:35. doi: 10.1186/s40798-015-0032-x.
    1. Wollersheim T., Haas K., Wolf S., Mai K., Spies C., Steinhagen-Thiessen E., Wernecke K.-D., Spranger J., Weber-Carstens S. Whole-body vibration to prevent intensive care unit-acquired weakness: Safety, feasibility, and metabolic response. Crit. Care. 2017;21:9. doi: 10.1186/s13054-016-1576-y.
    1. Bidonde J., Busch A.J., van der Spuy I., Tupper S., Kim S.Y., Boden C. Whole body vibration exercise training for fibromyalgia. Cochrane Database Syst. Rev. 2017 doi: 10.1002/14651858.CD011755.pub2.
    1. Chang S.-F., Lin P.-C., Yang R.-S., Yang R.-J. The preliminary effect of whole-body vibration intervention on improving the skeletal muscle mass index, physical fitness, and quality of life among older people with sarcopenia. BMC Geriatr. 2018;18:17. doi: 10.1186/s12877-018-0712-8.
    1. Murthy S., Gomersall C.D., Fowler R.A. Care for critically ill patients with covid-19. JAMA. 2020;323:1499–1500. doi: 10.1001/jama.2020.3633.
    1. Wu C., Chen X., Cai Y., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., Zhang Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. Jama Intern. Med. 2020 doi: 10.1001/jamainternmed.2020.0994.
    1. Wujtewicz M., Dylczyk-Sommer A., Aszkiełowicz A., Zdanowski S., Piwowarczyk S., Owczuk R. Covid-19-what should anaethesiologists and intensivists know about it? Anaesthesiol. Intensive Ther. 2020;52:34–41. doi: 10.5114/ait.2020.93756.
    1. Neufeld K.J., Leoutsakos J.-M.S., Yan H., Lin S., Zabinski J.S., Dinglas V.D., Hosey M.M., Parker A.M., Hopkins R.O., Needham D.M. Fatigue symptoms during the first year after ards. Chest. 2020 doi: 10.1016/j.chest.2020.03.059.
    1. Goërtz Y.M., Spruit M.A., Van ‘t Hul A.J., Peters J.B., Van Herck M., Nakken N., Djamin R.S., Burtin C., Thong M.S., Coors A. Fatigue is highly prevalent in patients with copd and correlates poorly with the degree of airflow limitation. Ther. Adv. Respir. Dis. 2019;13:1753466619878128. doi: 10.1177/1753466619878128.
    1. Spadaro S., Capuzzo M., Valpiani G., Bertacchini S., Ragazzi R., Dalla Corte F., Terranova S., Marangoni E., Volta C.A. Fatigue in intensive care survivors one year after discharge. Health Qual. Life Outcomes. 2016;14:148. doi: 10.1186/s12955-016-0554-z.
    1. Whitehead L. The measurement of fatigue in chronic illness: A systematic review of unidimensional and multidimensional fatigue measures. J. Pain Symptom Manag. 2009;37:107–128. doi: 10.1016/j.jpainsymman.2007.08.019.
    1. Alentorn-Geli E., Padilla J., Moras G., Haro C.L., Fernández-Solà J. Six weeks of whole-body vibration exercise improves pain and fatigue in women with fibromyalgia. J. Altern. Complementary Med. 2008;14:975–981. doi: 10.1089/acm.2008.0050.
    1. Corbianco S., Cavallini G., Baldereschi G., Carboncini M.C., Fiamingo F.L., Bongioanni P., Dini M. Whole body vibration and treadmill training in Parkinson’s disease rehabilitation: Effects on energy cost and recovery phases. Neurol. Sci. 2018;39:2159–2168. doi: 10.1007/s10072-018-3566-0.
    1. Escudero-Uribe S., Hochsprung A., Heredia-Camacho B., Izquierdo-Ayuso G. Effect of training exercises incorporating mechanical devices on fatigue and gait pattern in persons with relapsing-remitting multiple sclerosis. Physiother. Can. 2017;69:292–302. doi: 10.3138/ptc.2016-19.
    1. Pahl A., Wehrle A., Kneis S., Gollhofer A., Bertz H. Whole body vibration training during allogeneic hematopoietic cell transplantation—the effects on patients’ physical capacity. Ann. Hematol. 2020;99:1–14. doi: 10.1007/s00277-020-03921-x.
    1. Prioreschi A., Makda M.A., Tikly M., McVeigh J.A. In patients with established ra, positive effects of a randomised three month wbv therapy intervention on functional ability, bone mineral density and fatigue are sustained for up to six months. PLoS ONE. 2016;11:e0153470. doi: 10.1371/journal.pone.0153470.
    1. Furness T., Joseph C., Welsh L., Naughton G., Lorenzen C. Whole-body vibration as a mode of dyspnoea free physical activity: A community-based proof-of-concept trial. BMC Res. Notes. 2013;6:452. doi: 10.1186/1756-0500-6-452.
    1. Gloeckl R., Richter P., Winterkamp S., Pfeifer M., Nell C., Christle J.W., Kenn K. Cardiopulmonary response during whole-body vibration training in patients with severe copd. ERJ Open Res. 2017;3 doi: 10.1183/23120541.00101-2016.
    1. Furness T., Joseph C., Naughton G., Welsh L., Lorenzen C. Benefits of whole-body vibration to people with copd: A community-based efficacy trial. BMC Pulm. Med. 2014;14:38. doi: 10.1186/1471-2466-14-38.
    1. Jawed Y., Beli E., March K., Kaleth A., Loghmani M.T. Whole-body vibration training increases stem/progenitor cell circulation levels and may attenuate inflammation. Mil. Med. 2020;185:404–412. doi: 10.1093/milmed/usz247.
    1. Neves C.D., Lacerda A.C.R., Lage V.K., Soares A.A., Chaves M.G.A., Lima L.P., Silva T.J., Vieira É.L., Teixeira A.L., Leite H.R. Whole body vibration training increases physical measures and quality of life without altering inflammatory-oxidative biomarkers in patients with moderate copd. J. Appl. Physiol. 2018;125:520–528. doi: 10.1152/japplphysiol.01037.2017.
    1. Ribeiro V., Mendonça V., Souza A., Fonseca S., Camargos A., Lage V., Neves C., Santos J., Teixeira L., Vieira E. Inflammatory biomarkers responses after acute whole body vibration in fibromyalgia. Braz. J. Med. Biol. Res. 2018:51. doi: 10.1590/1414-431x20176775.
    1. Simão A.P., Avelar N.C., Tossige-Gomes R., Neves C.D., Mendonça V.A., Miranda A.S., Teixeira M.M., Teixeira A.L., Andrade A.P., Coimbra C.C. Functional performance and inflammatory cytokines after squat exercises and whole-body vibration in elderly individuals with knee osteoarthritis. Arch. Phys. Med. Rehabil. 2012;93:1692–1700. doi: 10.1016/j.apmr.2012.04.017.
    1. Song N., Liu X., Feng Q., Xu M., Lan X., Li M., Liu R., Li C., Dong T., Wang D. Whole body vibration triggers a change in the mutual shaping state of intestinal microbiota and body’s immunity. Front. Bioeng. Biotechnol. 2019;7:377. doi: 10.3389/fbioe.2019.00377.
    1. Blanks A.M., Rodriguez-Miguelez P., Looney J., Tucker M.A., Jeong J., Thomas J., Blackburn M., Stepp D.W., Weintraub N.J., Harris R.A. Whole body vibration elicits differential immune and metabolic responses in obese and normal weight individuals. Brainbehaviorimmunity-Health. 2020;1:100011. doi: 10.1016/j.bbih.2019.100011.
    1. Tossige-Gomes R., Avelar N., Simão A., Neves C., Brito-Melo G., Coimbra C., Rocha-Vieira E., Lacerda A. Whole-body vibration decreases the proliferativeb response of tcd4+ cells in elderly individuals with knee osteoarthritis. Braz. J. Med. Biol. Res. 2012;45:1262–1268. doi: 10.1590/S0100-879X2012007500139.
    1. Rittweger J., Beller G., Armbrecht G., Mulder E., Buehring B., Gast U., Dimeo F., Schubert H., De Haan A., Stegeman D.F. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone. 2010;46:137–147. doi: 10.1016/j.bone.2009.08.051.
    1. Greulich T., Nell C., Koepke J., Fechtel J., Franke M., Schmeck B., Haid D., Apelt S., Filipovic S., Kenn K. Benefits of whole body vibration training in patients hospitalised for copd exacerbations-a randomized clinical trial. BMC Pulm. Med. 2014;14:60. doi: 10.1186/1471-2466-14-60.
    1. Stark C., Herkenrath P., Hollmann H., Waltz S., Becker I., Hoebing L., Semler O., Hoyer-Kuhn H., Duran I., Hero B. Early vibration assisted physiotherapy in toddlers with cerebral palsy–a randomized controlled pilot trial. J. Musculoskelet. Neuronal Interact. 2016;16:183.
    1. Gloeckl R., Jarosch I., Bengsch U., Claus M., Schneeberger T., Andrianopoulos V., Christle J.W., Hitzl W., Kenn K. What’s the secret behind the benefits of whole-body vibration training in patients with copd? A randomized, controlled trial. Respir. Med. 2017;126:17–24. doi: 10.1016/j.rmed.2017.03.014.
    1. Rittweger J., Schiessl H., Felsenberg D. Oxygen uptake during whole-body vibration exercise: Comparison with squatting as a slow voluntary movement. Eur. J. Appl. Physiol. 2001;86:169–173. doi: 10.1007/s004210100511.
    1. Hazell T.J., Thomas G.W., DeGuire J.R., Lemon P.W. Vertical whole-body vibration does not increase cardiovascular stress to static semi-squat exercise. Eur. J. Appl. Physiol. 2008;104:903. doi: 10.1007/s00421-008-0847-y.
    1. Boeselt T., Nell C., Kehr K., Holland A., Dresel M., Greulich T., Tackenberg B., Kenn K., Boeder J., Klapdor B. Whole-body vibration therapy in intensive care patients: A feasibility and safety study. J. Rehabil. Med. 2016;48:316–321. doi: 10.2340/16501977-2052.
    1. Kim J.-H., Seo H.-J. Influence of pelvic position and vibration frequency on muscle activation during whole body vibration in quiet standing. J. Phys. Ther. Sci. 2015;27:1055–1058. doi: 10.1589/jpts.27.1055.
    1. Ritzmann R., Gollhofer A., Kramer A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur. J. Appl. Physiol. 2013;113:1–11. doi: 10.1007/s00421-012-2402-0.
    1. Eckhardt H., Wollny R., Müller H., Bärtsch P., Friedmann-Bette B. Enhanced myofiber recruitment during exhaustive squatting performed as whole-body vibration exercise. J. Strength Cond. Res. 2011;25:1120–1125. doi: 10.1519/JSC.0b013e3181d09e0e.
    1. Abercromby A.F., Amonette W.E., Layne C.S., McFarlin B.K., Hinman M.R., Paloski W.H. Vibration exposure and biodynamic responses during whole-body vibration training. Med. Sci. Sports Exerc. 2007;39:1794–1800. doi: 10.1249/mss.0b013e3181238a0f.
    1. Rohlmann A., Schmidt H., Gast U., Kutzner I., Damm P., Bergmann G. In vivo measurements of the effect of whole body vibration on spinal loads. Eur. Spine J. 2014;23:666–672. doi: 10.1007/s00586-013-3087-8.
    1. Pollock R.D., Woledge R.C., Mills K.R., Martin F.C., Newham D.J. Muscle activity and acceleration during whole body vibration: Effect of frequency and amplitude. Clin. Biomech. 2010;25:840–846. doi: 10.1016/j.clinbiomech.2010.05.004.
    1. Braz Júnior D.S., de Andrade A.D., Teixeira A.S., Cavalcanti C.A., Morais A.B., Marinho P.E. Whole-body vibration improves functional capacity and quality of life in patients with severe chronic obstructive pulmonary disease (copd): A pilot study. Int. J. Chronic Obstr. Pulm. Dis. 2015;10:125.
    1. Gloeckl R., Heinzelmann I., Baeuerle S., Damm E., Schwedhelm A.-L., Diril M., Buhrow D., Jerrentrup A., Kenn K. Effects of whole body vibration in patients with chronic obstructive pulmonary disease–a randomized controlled trial. Respir. Med. 2012;106:75–83. doi: 10.1016/j.rmed.2011.10.021.
    1. Boerema A.S., Heesterbeek M., Boersma S.A., Schoemaker R., de Vries E.F., van Heuvelen M.J., Van der Zee E.A. Beneficial effects of whole body vibration on brain functions in mice and humans. Dose-Response. 2018;16:1559325818811756. doi: 10.1177/1559325818811756.
    1. Regterschot G.R.H., Van Heuvelen M.J., Zeinstra E.B., Fuermaier A.B., Tucha L., Koerts J., Tucha O., Van Der Zee E.A. Whole body vibration improves cognition in healthy young adults. PLoS ONE. 2014;9:e100506. doi: 10.1371/journal.pone.0100506.
    1. Choi D.-S., Lee H.-J., Shin Y.-I., Lee A., Kim H.-G., Kim Y.-H. Modulation of cortical activity by high-frequency whole-body vibration exercise: An fnirs study. J. Sport Rehabil. 2019;28:665–670. doi: 10.1123/jsr.2017-0012.
    1. Heesterbeek M., Jentsch M., Roemers P., Keijser J.N., Toth K., Nyakas C., Schoemaker R.G., van Heuvelen M., van der Zee E. Whole body vibration enhances choline acetyltransferase-immunoreactivity in cortex and amygdale. J. Neurol. Transl. Neurosci. 2017;5:1079.
    1. Zhao L., He L., Huang S., Gong L., Lv Y., Qian Z. Protection of dopamine neurons by vibration training and up-regulation of brain-derived neurotrophic factor in a mptp mouse model of Parkinson’s disease. Physiol. Res. 2014;63:649–657.
    1. Leitch A., Duffin R., Haslett C., Rossi A. Relevance of granulocyte apoptosis to resolution of inflammation at the respiratory mucosa. Mucosal Immunol. 2008;1:350–363. doi: 10.1038/mi.2008.31.
    1. Brusselle G., Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2014;11:S322–S328. doi: 10.1513/AnnalsATS.201403-118AW.
    1. Wong J., Magun B.E., Wood L.J. Lung inflammation caused by inhaled toxicants: A review. Int. J. Chronic Obstr. Pulm. Dis. 2016;11:1391. doi: 10.2147/COPD.S106009.
    1. Leal L.G., Lopes M.A., Batista Jr M.L. Physical exercise-induced myokines and muscle-adipose tissue crosstalk: A review of current knowledge and the implications for health and metabolic diseases. Front. Physiol. 2018;9:1307. doi: 10.3389/fphys.2018.01307.
    1. Beavers K.M., Brinkley T.E., Nicklas B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta. 2010;411:785–793. doi: 10.1016/j.cca.2010.02.069.
    1. Mizuhara H., O’Neill E., Seki N., Ogawa T., Kusunoki C., Otsuka K., Satoh S., Niwa M., Senoh H., Fujiwara H. T cell activation-associated hepatic injury: Mediation by tumor necrosis factors and protection by interleukin 6. J. Exp. Med. 1994;179:1529–1537. doi: 10.1084/jem.179.5.1529.
    1. Steensberg A., Fischer C.P., Keller C., Møller K., Pedersen B.K. Il-6 enhances plasma il-1ra, il-10, and cortisol in humans. Am. J. Physiol. -Endocrinol. Metab. 2003;285:E433–E437. doi: 10.1152/ajpendo.00074.2003.
    1. Murakami S., Kurihara S., Titchenal C.A., Ohtani M. Suppression of exercise-induced neutrophilia and lymphopenia in athletes by cystine/theanine intake: A randomized, double-blind, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2010;7:23. doi: 10.1186/1550-2783-7-23.
    1. Furuncuoğlu Y., Tulgar S., Dogan A., Cakar S., Tulgar Y., Cakiroglu B. How obesity affects the neutrophil/lymphocyte and platelet/lymphocyte ratio, systemic immune-inflammatory index and platelet indices: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2016;20:1300–1306.
    1. Wärnberg J., Cunningham K., Romeo J., Marcos A. Physical activity, exercise and low-grade systemic inflammation. Proc. Nutr. Soc. 2010;69:400–406. doi: 10.1017/S0029665110001928.
    1. Thomas S., Mehrholz J., Bodechtel U., Elsner B. Effect of physiotherapy on regaining independent walking in patients with intensive-care-unit-acquired muscle weakness: A cohort study. J. Rehabil. Med. 2019;51:797–804. doi: 10.2340/16501977-2606.
    1. Capri M., Morsiani C., Santoro A., Moriggi M., Conte M., Martucci M., Bellavista E., Fabbri C., Giampieri E., Albracht K. Recovery from 6-month spaceflight at the international space station: Muscle-related stress into a proinflammatory setting. FASEB J. 2019;33:5168–5180. doi: 10.1096/fj.201801625R.
    1. Buehring B., Belavý D.L., Michaelis I., Gast U., Felsenberg D., Rittweger J. Changes in lower extremity muscle function after 56 days of bed rest. J. Appl. Physiol. 2011;111:87–94. doi: 10.1152/japplphysiol.01294.2010.
    1. National Strength & Conditioning Association . Strength Training. Human Kinetics, Incorporated; Champaign, IL, USA: 2016.
    1. Toigo M. Muskelrevolution: Konzepte und Rezepte zum Muskel- und Kraftaufbau. Springer; Berlin, Germany: 2019.
    1. Zhou J., Pang L., Chen N., Wang Z., Wang C., Hai Y., Lyu M., Lai H., Lin F. Whole-body vibration training–better care for copd patients: A systematic review and meta-analysis. Int. J. Chronic Obstr. Pulm. Dis. 2018;13:3243. doi: 10.2147/COPD.S176229.
    1. Sá-Caputo D., Gonçalves C.R., Morel D.S., Marconi E.M., Fróes P., Rufino R., Costa C.H., Lopes A.J., Arnóbio A., Asad N.R. Benefits of whole-body vibration, as a component of the pulmonary rehabilitation, in patients with chronic obstructive pulmonary disease: A narrative review with a suitable approach. Evid. -Based Complementary Altern. Med. 2016;2016 doi: 10.1155/2016/2560710.
    1. Van der Zee E.A., Heesterbeek M., Tucha O., Fuermaier A.B., van Heuvelen M.J. Whole Body Vibrations. CRC Press; Boca Raton, FL, USA: 2018. Whole body vibration, cognition, and the brain; pp. 151–170.
    1. Girard T.D., Self W.H., Edwards K.M., Grijalva C.G., Zhu Y., Williams D.J., Jain S., Jackson J.C. Long-term cognitive impairment after hospitalization for community-acquired pneumonia: A prospective cohort study. J. Gen. Intern. Med. 2018;33:929–935. doi: 10.1007/s11606-017-4301-x.
    1. Davydow D.S., Hough C.L., Levine D.A., Langa K.M., Iwashyna T.J. Functional disability, cognitive impairment, and depression after hospitalization for pneumonia. Am. J. Med. 2013;126:615–624.e5. doi: 10.1016/j.amjmed.2012.12.006.
    1. McCoy J.G., McKenna J.T., Connolly N.P., Poeta D.L., Ling L., McCarley R.W., Strecker R.E. One week of exposure to intermittent hypoxia impairs attentional set-shifting in rats. Behav. Brain Res. 2010;210:123–126. doi: 10.1016/j.bbr.2010.01.043.
    1. Yaffe K., Laffan A.M., Harrison S.L., Redline S., Spira A.P., Ensrud K.E., Ancoli-Israel S., Stone K.L. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306:613–619. doi: 10.1001/jama.2011.1115.
    1. Carmeli E., Reznick A.Z. The physiology and biochemistry of skeletal muscle atrophy as a function of age. Proc. Soc. Exp. Biol. Med. 1994;206:103–113. doi: 10.3181/00379727-206-43727.
    1. Iwashyna T.J., Ely E.W., Smith D.M., Langa K.M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–1794. doi: 10.1001/jama.2010.1553.
    1. Schweickert W.D., Hall J. Icu-acquired weakness. Chest. 2007;131:1541–1549. doi: 10.1378/chest.06-2065.
    1. Schweickert W.D., Pohlman M.C., Pohlman A.S., Nigos C., Pawlik A.J., Esbrook C.L., Spears L., Miller M., Franczyk M., Deprizio D. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet. 2009;373:1874–1882. doi: 10.1016/S0140-6736(09)60658-9.
    1. Kellum J.A., Kong L., Fink M.P., Weissfeld L.A., Yealy D.M., Pinsky M.R., Fine J., Krichevsky A., Delude R.L., Angus D.C. Understanding the inflammatory cytokine response in pneumonia and sepsis: Results of the genetic and inflammatory markers of sepsis (genims) study. Arch. Intern. Med. 2007;167:1655–1663. doi: 10.1001/archinte.167.15.1655.
    1. Danese A., Moffitt T.E., Pariante C.M., Ambler A., Poulton R., Caspi A. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch. Gen. Psychiatry. 2008;65:409–415. doi: 10.1001/archpsyc.65.4.409.
    1. Hillman C.H., Erickson K.I., Kramer A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008;9:58–65. doi: 10.1038/nrn2298.

Source: PubMed

3
購読する