A New Characterization of Mental Health Disorders Using Digital Behavioral Data: Evidence from Major Depressive Disorder

Dekel Taliaz, Daniel Souery, Dekel Taliaz, Daniel Souery

Abstract

Mental health disorders are ambiguously defined and diagnosed. The established diagnosis technique, which is based on structured interviews, questionnaires and data subjectively reported by the patients themselves, leaves the mental health field behind other medical areas. We support these statements with examples from major depressive disorder (MDD). The National Institute of Mental Health (NIMH) launched the Research Domain Criteria (RDoC) project in 2009 as a new framework to investigate psychiatric pathologies from a multidisciplinary point of view. This is a good step in the right direction. Contemporary psychiatry considers mental illnesses as diseases that manifest in the mind and arise from the brain, expressed as a behavioral condition; therefore, we claim that these syndromes should be characterized primarily using behavioral characteristics. We suggest the use of smartphones and wearable devices to passively collect quantified behavioral data from patients by utilizing digital biomarkers of mental disorder symptoms. Various digital biomarkers of MDD symptoms have already been detected, and apps for collecting this longitudinal behavioral data have already been developed. This quantified data can be used to determine a patient's diagnosis and personalized treatment, and thereby minimize the diagnosis rate of comorbidities. As there is a wide spectrum of human behavior, such a fluidic and personalized approach is essential.

Keywords: Research Domain Criteria; digital biomarkers; digital phenotyping; major depressive disorder; personalized psychiatry.

Conflict of interest statement

Dekel Taliaz is the founder and CEO of Taliaz, and reports stock ownership in Taliaz. Daniel Souery is on the scientific advisory board of Taliaz and has received consulting fees from Taliaz.

Figures

Figure 1
Figure 1
Stages toward a paradigm shift: (a) Today, established diagnoses of mental disorders are based on interviews. Different disciplines (smaller circles) are investigated separately. Some of those investigated areas contribute (unidirectional dashed arrows) to the diagnosis. (b) At the first stage, behavioral data should become the field’s pillar. Data from other relevant areas (smaller circles) will be cross-referenced (dashed bidirectional arrows) with behavioral data. (c) At the second stage, a substantial understanding of the behavioral component could lead to finding correlations (red lines) between behavioral markers and markers from other areas (smaller circles). This would promote crosstalk (dashed bidirectional arrows) between the different areas and consequently expand our knowledge in those areas.

References

    1. Newson J.J., Hunter D., Thiagarajan T.C. The Heterogeneity of Mental Health Assessment. Front. Psychiatry. 2020;11:76. doi: 10.3389/fpsyt.2020.00076.
    1. Olbert C.M., Gala G.J., Tupler L.A. Quantifying Heterogeneity Attributable to Polythetic Diagnostic Criteria: Theoretical Framework and Empirical Application. J. Abnorm. Psychol. 2014;123:452. doi: 10.1037/a0036068.
    1. Polanczyk G.V., Salum G.A., Sugaya L.S., Caye A., Rohde L.A. Annual Research Review: A Meta-Analysis of the Worldwide Prevalence of Mental Disorders in Children and Adolescents. J. Child Psychol. Psychiatry. 2015;56:345–365. doi: 10.1111/jcpp.12381.
    1. Bromet E., Andrade L.H., Hwang I., Sampson N.A., Alonso J., De Girolamo G., De Graaf R., Demyttenaere K., Hu C., Iwata N. Cross-National Epidemiology of DSM-IV Major Depressive Episode. BMC Med. 2011;9:90. doi: 10.1186/1741-7015-9-90.
    1. Suicide. [(accessed on 15 March 2021)]; Available online: .
    1. Whooley M.A., Wong J.M. Depression and Cardiovascular Disorders. Annu. Rev. Clin. Psychol. 2013;9:327–354. doi: 10.1146/annurev-clinpsy-050212-185526.
    1. Fried E.I. Moving Forward: How Depression Heterogeneity Hinders Progress in Treatment and Research. Expert Rev. Neurother. 2017;17:423–425. doi: 10.1080/14737175.2017.1307737.
    1. Santor D.A., Gregus M., Welch A. FOCUS ARTICLE: Eight Decades of Measurement in Depression. Meas. Interdiscip. Res. Perspect. 2006;4:135–155. doi: 10.1207/s15366359mea0403_1.
    1. Zimmerman M., Ellison W., Young D., Chelminski I., Dalrymple K. How Many Different Ways Do Patients Meet the Diagnostic Criteria for Major Depressive Disorder? Compr. Psychiatry. 2015;56:29–34. doi: 10.1016/j.comppsych.2014.09.007.
    1. Association A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) American Psychiatric Pub; Arlington, WV, USA: 2013.
    1. Rush A.J., Trivedi M.H., Wisniewski S.R., Nierenberg A.A., Stewart J.W., Warden D., Niederehe G., Thase M.E., Lavori P.W., Lebowitz B.D. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR* D Report. Am. J. Psychiatry. 2006;163:1905–1917. doi: 10.1176/ajp.2006.163.11.1905.
    1. Thase M.E., Friedman E.S., Biggs M.M., Wisniewski S.R., Trivedi M.H., Luther J.F., Fava M., Nierenberg A.A., McGrath P.J., Warden D. Cognitive Therapy versus Medication in Augmentation and Switch Strategies as Second-Step Treatments: A STAR* D Report. Am. J. Psychiatry. 2007;164:739–752. doi: 10.1176/ajp.2007.164.5.739.
    1. Kendler K.S., First M.B. Alternative Futures for the DSM Revision Process: Iteration v. Paradigm Shift. Br. J. Psychiatry. 2010;197:263–265. doi: 10.1192/bjp.bp.109.076794.
    1. Kupfer D.J., Regier D.A. Neuroscience, Clinical Evidence, and the Future of Psychiatric Classification in DSM-5. Am. J. Psychiatry. 2011;168:672–674. doi: 10.1176/appi.ajp.2011.11020219.
    1. Regier D.A., Narrow W.E., Kuhl E.A., Kupfer D.J. The Conceptual Development of DSM-V. Am. J. Psychiatry. 2009;166:645–650. doi: 10.1176/appi.ajp.2009.09020279.
    1. NIMH About RDoC. [(accessed on 15 March 2021)]; Available online: .
    1. Insel T.R. The NIMH Research Domain Criteria (RDoC) Project: Precision Medicine for Psychiatry. Am. J. Psychiatry. 2014;171:395–397. doi: 10.1176/appi.ajp.2014.14020138.
    1. Cuthbert B.N., Insel T.R. Toward the Future of Psychiatric Diagnosis: The Seven Pillars of RDoC. BMC Med. 2013;11:126. doi: 10.1186/1741-7015-11-126.
    1. Perugi G., Barbuti M. There Are No Patients without Comorbidity. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2021;50:104–106. doi: 10.1016/j.euroneuro.2021.05.002.
    1. Haggerty R.J., Mrazek P.J. Reducing Risks for Mental Disorders: Frontiers for Preventive Intervention Research. National Academies Press; Washington, DC, USA: 1994.
    1. Andreasen N.C. Linking Mind and Brain in the Study of Mental Illnesses: A Project for a Scientific Psychopathology. Science. 1997;275:1586–1593. doi: 10.1126/science.275.5306.1586.
    1. Olmert T., Cooper J.D., Han S.Y.S., Barton-Owen G., Farrag L., Bell E., Friend L.V., Ozcan S., Rustogi N., Preece R.L. A Combined Digital and Biomarker Diagnostic Aid for Mood Disorders (the Delta Trial): Protocol for an Observational Study. JMIR Res. Protoc. 2020;9:e18453. doi: 10.2196/18453.
    1. Cormack F., McCue M., Taptiklis N., Skirrow C., Glazer E., Panagopoulos E., van Schaik T.A., Fehnert B., King J., Barnett J.H. Wearable Technology for High-Frequency Cognitive and Mood Assessment in Major Depressive Disorder: Longitudinal Observational Study. JMIR Ment. Health. 2019;6:e12814. doi: 10.2196/12814.
    1. Suhara Y., Xu Y., Pentland A. Deepmood: Forecasting Depressed Mood Based on Self-Reported Histories via Recurrent Neural Networks; Proceedings of the 26th International Conference on World Wide Web; Perth, Australia. 3 July 2017; pp. 715–724.
    1. Torous J., Staples P., Shanahan M., Lin C., Peck P., Keshavan M., Onnela J.-P. Utilizing a Personal Smartphone Custom App to Assess the Patient Health Questionnaire-9 (PHQ-9) Depressive Symptoms in Patients with Major Depressive Disorder. JMIR Ment. Health. 2015;2:e3889. doi: 10.2196/mental.3889.
    1. Onnela J.-P., Rauch S.L. Harnessing Smartphone-Based Digital Phenotyping to Enhance Behavioral and Mental Health. Neuropsychopharmacology. 2016;41:1691–1696. doi: 10.1038/npp.2016.7.
    1. Vettoretti M., Cappon G., Acciaroli G., Facchinetti A., Sparacino G. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications. J. Diabetes Sci. Technol. 2018;12:1064–1071. doi: 10.1177/1932296818774078.
    1. Turakhia M.P., Desai M., Hedlin H., Rajmane A., Talati N., Ferris T., Desai S., Nag D., Patel M., Kowey P., et al. Rationale and Design of a Large-Scale, App-Based Study to Identify Cardiac Arrhythmias Using a Smartwatch: The Apple Heart Study. Am. Heart J. 2019;207:66–75. doi: 10.1016/j.ahj.2018.09.002.
    1. Torous J., Onnela J.-P., Keshavan M. New Dimensions and New Tools to Realize the Potential of RDoC: Digital Phenotyping via Smartphones and Connected Devices. Transl. Psychiatry. 2017;7:e1053. doi: 10.1038/tp.2017.25.
    1. Brietzke E., Hawken E.R., Idzikowski M., Pong J., Kennedy S.H., Soares C.N. Integrating Digital Phenotyping in Clinical Characterization of Individuals with Mood Disorders. Neurosci. Biobehav. Rev. 2019;104:223–230. doi: 10.1016/j.neubiorev.2019.07.009.
    1. Insel T.R. Digital Phenotyping: A Global Tool for Psychiatry. World Psychiatry. 2018;17:276. doi: 10.1002/wps.20550.
    1. Mundt J.C., Vogel A.P., Feltner D.E., Lenderking W.R. Vocal Acoustic Biomarkers of Depression Severity and Treatment Response. Biol. Psychiatry. 2012;72:580–587. doi: 10.1016/j.biopsych.2012.03.015.
    1. Mundt J.C., Snyder P.J., Cannizzaro M.S., Chappie K., Geralts D.S. Voice Acoustic Measures of Depression Severity and Treatment Response Collected via Interactive Voice Response (IVR) Technology. J. Neurolinguistics. 2007;20:50–64. doi: 10.1016/j.jneuroling.2006.04.001.
    1. Zhang L., Duvvuri R., Chandra K.K.L., Nguyen T., Ghomi R.H. Automated Voice Biomarkers for Depression Symptoms Using an Online Cross-Sectional Data Collection Initiative. Depress. Anxiety. 2020;37:657–669. doi: 10.1002/da.23020.
    1. Jacobson N.C., Weingarden H., Wilhelm S. Digital Biomarkers of Mood Disorders and Symptom Change. NPJ Digit. Med. 2019;2:1–3. doi: 10.1038/s41746-019-0078-0.
    1. Jacobson N.C., Weingarden H., Wilhelm S. Using Digital Phenotyping to Accurately Detect Depression Severity. J. Nerv. Ment. Dis. 2019;207:893–896. doi: 10.1097/NMD.0000000000001042.
    1. Tonon A.C., Fuchs D.F.P., Gomes W.B., Levandovski R., de Almeida Fleck M.P., Hidalgo M.P.L., da Silva Alencastro L. Nocturnal Motor Activity and Light Exposure: Objective Actigraphy-Based Marks of Melancholic and Non-Melancholic Depressive Disorder. Brief Report. Psychiatry Res. 2017;258:587–590. doi: 10.1016/j.psychres.2017.08.025.
    1. Saeb S., Zhang M., Karr C.J., Schueller S.M., Corden M.E., Kording K.P., Mohr D.C. Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study. J. Med. Internet Res. 2015;17:e175. doi: 10.2196/jmir.4273.
    1. Dagum P. Digital Biomarkers of Cognitive Function. NPJ Digit. Med. 2018;1:1–3. doi: 10.1038/s41746-018-0018-4.
    1. Mandryk R.L., Birk M.V. The Potential of Game-Based Digital Biomarkers for Modeling Mental Health. JMIR Ment. Health. 2019;6:e13485. doi: 10.2196/13485.
    1. Gross J.J., Jazaieri H. Emotion, Emotion Regulation, and Psychopathology: An Affective Science Perspective. Clin. Psychol. Sci. 2014;2:387–401. doi: 10.1177/2167702614536164.
    1. Marzano L., Bardill A., Fields B., Herd K., Veale D., Grey N., Moran P. The Application of MHealth to Mental Health: Opportunities and Challenges. Lancet Psychiatry. 2015;2:942–948. doi: 10.1016/S2215-0366(15)00268-0.
    1. Pratap A., Atkins D.C., Renn B.N., Tanana M.J., Mooney S.D., Anguera J.A., Areán P.A. The Accuracy of Passive Phone Sensors in Predicting Daily Mood. Depress. Anxiety. 2019;36:72–81. doi: 10.1002/da.22822.
    1. Lydon-Staley D.M., Barnett I., Satterthwaite T.D., Bassett D.S. Digital Phenotyping for Psychiatry: Accommodating Data and Theory with Network Science Methodologies. Curr. Opin. Biomed. Eng. 2019;9:8–13. doi: 10.1016/j.cobme.2018.12.003.
    1. Sultana M., Al-Jefri M., Lee J. Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study. JMIR MHealth UHealth. 2020;8:e17818. doi: 10.2196/17818.
    1. Burns M.N., Begale M., Duffecy J., Gergle D., Karr C.J., Giangrande E., Mohr D.C. Harnessing Context Sensing to Develop a Mobile Intervention for Depression. J. Med. Internet Res. 2011;13:e55. doi: 10.2196/jmir.1838.
    1. Torous J., Kiang M.V., Lorme J., Onnela J.-P. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research. JMIR Ment. Health. 2016;3:e5165. doi: 10.2196/mental.5165.
    1. Ellsworth R.E., Decewicz D.J., Shriver C.D., Ellsworth D.L. Breast Cancer in the Personal Genomics Era. Curr. Genomics. 2010;11:146–161. doi: 10.2174/138920210791110951.
    1. Priyadharshini V.S., Teran L.M. Personalized Medicine in Respiratory Disease: Role of Proteomics. Adv. Protein Chem. Struct. Biol. 2016;102:115–146.
    1. Xu J., Yang P., Xue S., Sharma B., Sanchez-Martin M., Wang F., Beaty K.A., Dehan E., Parikh B. Translating Cancer Genomics into Precision Medicine with Artificial Intelligence: Applications, Challenges and Future Perspectives. Hum. Genet. 2019;138:109–124. doi: 10.1007/s00439-019-01970-5.
    1. Winner J.G., Carhart J.M. A Prospective, Randomized, Double-Blind Study Assessing the Clinical Impact of Integrated Pharmacogenomic Testing for Major Depressive Disorder. Discov. Med. 2013;16:219–227.
    1. Kim K., Magness J.W., Nelson R., Baron V., Brixner D.I. Clinical Utility of Pharmacogenetic Testing and a Clinical Decision Support Tool to Enhance the Identification of Drug Therapy Problems Through Medication Therapy Management in Polypharmacy Patients. J. Manag. Care Spec. Pharm. 2018;24:1250–1259. doi: 10.18553/jmcp.2018.24.12.1250.
    1. Pérez V., Salavert A., Espadaler J., Tuson M., Saiz-Ruiz J., Sáez-Navarro C., Bobes J., Baca-García E., Vieta E., Olivares J.M. Efficacy of Prospective Pharmacogenetic Testing in the Treatment of Major Depressive Disorder: Results of a Randomized, Double-Blind Clinical Trial. BMC Psychiatry. 2017;17:1–13. doi: 10.1186/s12888-017-1412-1.
    1. PREDICTIX Genetics. [(accessed on 4 July 2021)]; Available online: .
    1. Taliaz D., Spinrad A., Barzilay R., Barnett-Itzhaki Z., Averbuch D., Teltsh O., Schurr R., Darki-Morag S., Lerer B. Optimizing Prediction of Response to Antidepressant Medications Using Machine Learning and Integrated Genetic, Clinical, and Demographic Data. Transl. Psychiatry. 2021;11:1–9. doi: 10.1038/s41398-021-01488-3.
    1. Mendelson W. Human Sleep and Its Disorders. Springer Science & Business Media; Boston, MA, USA: 2012.
    1. Conte F., Arzilli C., Errico B.M., Giganti F., Iovino D., Ficca G. Sleep Measures Expressing ‘Functional Uncertainty’in Elderlies’ Sleep. Gerontology. 2014;60:448–457. doi: 10.1159/000358083.
    1. Feinberg I., Carlson V.R. Sleep Variables as a Function of Age in Man. Arch. Gen. Psychiatry. 1968;18:239–250. doi: 10.1001/archpsyc.1968.01740020111014.
    1. Klerman E.B., Dijk D.-J. Age-Related Reduction in the Maximal Capacity for Sleep—Implications for Insomnia. Curr. Biol. 2008;18:1118–1123. doi: 10.1016/j.cub.2008.06.047.
    1. Webb W.B., Campbell S.S. The First Night Effect Revisited with Age as a Variable. Waking Sleep. 1979;3:319–324.
    1. Slavich G.M., Taylor S., Picard R.W. Stress Measurement Using Speech: Recent Advancements, Validation Issues, and Ethical and Privacy Considerations. Stress. 2019;22:408–413. doi: 10.1080/10253890.2019.1584180.

Source: PubMed

3
購読する