Patient and haemodynamic factors affecting intraoperative graft flow during coronary artery bypass grafting: an observational pilot study

Sang-Wook Lee, Jun-Young Jo, Wook-Jong Kim, Dae-Kee Choi, In-Cheol Choi, Sang-Wook Lee, Jun-Young Jo, Wook-Jong Kim, Dae-Kee Choi, In-Cheol Choi

Abstract

Transit-time flow measurement (TTFM) is frequently used to evaluate intraoperative quality control during coronary artery bypass grafting (CABG) and has the ability to assess graft failure intraoperatively. However, perioperative factors affecting TTFM during CABG remain poorly understood. Patients who underwent CABG at a single institution between July 2016 and May 2018 were prospectively evaluated. TTFM and blood viscosity were measured haemodynamically, while mean flow (mL/min), pulsatility index, and diastolic filling were recorded. Arterial blood gas was analysed immediately after left internal mammary artery to left descending artery anastomosis and before sternal closure. Factors associated with TTFM were assessed using multiple linear regression analysis. We evaluated 57 of the 62 patients who underwent CABG during the study period, including 49 who underwent off-pump and 8 who underwent on-pump surgeries. Blood viscosity was not significantly associated with TTFM (p > 0.05). However, TTFM was significantly associated with body mass index, systolic blood pressure, and cardiac index (p < 0.05 each). In conclusion, maintaining the SBP in the perioperative period and maintaining the CI with inotropic support or fluid resuscitation can be important in improving blood flow of graft vessels after surgery.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Flow diagram of the study. TTFM transit-time flow measurement, PI pulsatility index.
Figure 2
Figure 2
Intraoperative and haemodynamic findings. T1, after anaesthesia induction. T2, after left internal mammary artery (LIMA) to left anterior descending artery (LAD) anastomosis. T3, before sternal closure. HR heart rate, SBP systolic blood pressure, DBP diastolic blood pressure, MBP mean blood pressure, CVP central venous pressure, mPAP mean pulmonary artery pressure, CI cardiac index, SVRI systemic vascular resistance index, PaCO2 partial pressure of carbon dioxide, PaO2 partial pressure of oxygen, Hb haemoglobin, Hct haematocrit.
Figure 3
Figure 3
Scatter plot showing the correlation between the three parameters of TTFM and BMI, SBP, and CI. MFR mean flow rate, PI pulsatility index, DF diastolic filling, TTFM transit-time flow measurement, BMI body mass index, SBP systolic blood pressure, CI cardiac index.
Figure 4
Figure 4
Scatter plot showing the correlation between the three parameters of TTFM and viscosity. MFR mean flow rate, PI pulsatility index, DF diastolic filling, TTFM transit-time flow measurement. Viscosity S, systolic blood viscosity; Viscosity D, diastolic blood viscosity.

References

    1. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2016. (2018).
    1. Nowbar AN, Gitto M, Howard JP, Francis DP, Al-Lamee R. Mortality from ischemic heart disease. Circ Cardiovasc Qual Outcomes. 2019;12:e005375. doi: 10.1161/CIRCOUTCOMES.118.005375.
    1. Leong DK, Ashok V, Nishkantha A, Shan YH, Sim EK. Transit-time flow measurement is essential in coronary artery bypass grafting. Ann. Thorac. Surg. 2005;79:854–857. doi: 10.1016/j.athoracsur.2004.06.010.
    1. Beldi G, Bosshard A, Hess OM, Althaus U, Walpoth BH. Transit time flow measurement: experimental validation and comparison of three different systems. Ann. Thorac. Surg. 2000;70:212–217. doi: 10.1016/s0003-4975(00)01246-7.
    1. Hirotani T, Kameda T, Shirota S, Nakao Y. An evaluation of the intraoperative transit time measurements of coronary bypass flow. Eur. J. Cardiothorac. Surg. 2001;19:848–852. doi: 10.1016/s1010-7940(01)00700-x.
    1. Kjaergard HK, Irmukhamedov A, Christensen JB, Schmidt TA. Flow in coronary bypass conduits on-pump and off-pump. Ann. Thorac. Surg. 2004;78:2054–2056. doi: 10.1016/j.athoracsur.2004.06.009.
    1. Onorati F, et al. Single versus sequential saphenous vein grafting of the circumflex system: a flowmetric study. Scand. Cardiovasc. J. 2007;41:265–271. doi: 10.1080/14017430701283864.
    1. Nordgaard H, Vitale N, Haaverstad R. Transit-time blood flow measurements in sequential saphenous coronary artery bypass grafts. Ann. Thorac. Surg. 2009;87:1409–1415. doi: 10.1016/j.athoracsur.2009.02.018.
    1. Takami Y, Takagi Y. Roles of transit-time flow measurement for coronary artery bypass surgery. Thorac. Cardiovasc. Surg. 2018;66:426–433. doi: 10.1055/s-0037-1618575.
    1. D'Ancona G, Karamanoukian HL, Ricci M, Bergsland J, Salerno TA. Graft patency verification in coronary artery bypass grafting: principles and clinical applications of transit time flow measurement. Angiology. 2000;51:725–731. doi: 10.1177/000331970005100904.
    1. Dean DA, et al. Validation study of a new transit time ultrasonic flow probe for continuous great vessel measurements. ASAIO J. 1996;42:M671–676. doi: 10.1097/00002480-199609000-00072.
    1. Matre K, Birkeland S, Hessevik I, Segadal L. Comparison of transit-time and Doppler ultrasound methods for measurement of flow in aortocoronary bypass grafts during cardiac surgery. Thorac. Cardiovasc. Surg. 1994;42:170–174. doi: 10.1055/s-2007-1016481.
    1. Cinar Y, Senyol AM, Duman K. Blood viscosity and blood pressure: role of temperature and hyperglycemia. Am. J. Hypertens. 2001;14:433–438. doi: 10.1016/s0895-7061(00)01260-7.
    1. Nader E, et al. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 2019;10:1329. doi: 10.3389/fphys.2019.01329.
    1. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 2003;29:435–450. doi: 10.1055/s-2003-44551.
    1. Kesmarky G, Kenyeres P, Rabai M, Toth K. Plasma viscosity: a forgotten variable. Clin. Hemorheol. Microcirc. 2008;39:243–246. doi: 10.3233/CH-2008-1088.
    1. Cokelet GR, Meiselman HJ. Handbook of Hemorheology and Hemodynamics. Amsterdam: IOS Press; 2007. pp. 45–71.
    1. Amin S, Pinho-Gomes AC, Taggart DP. Relationship of intraoperative transit time flowmetry findings to angiographic graft patency at follow-up. Ann. Thorac. Surg. 2016;101:1996–2006. doi: 10.1016/j.athoracsur.2015.10.101.
    1. Head SJ, et al. Coronary artery bypass grafting: part 2—optimizing outcomes and future prospects. Eur. Heart J. 2013;34:2873–2886. doi: 10.1093/eurheartj/eht284.
    1. Head SJ, Kieser TM, Falk V, Huysmans HA, Kappetein AP. Coronary artery bypass grafting: part 1—the evolution over the first 50 years. Eur. Heart J. 2013;34:2862–2872. doi: 10.1093/eurheartj/eht330.
    1. Lehnert P, Moller CH, Damgaard S, Gerds TA, Steinbruchel DA. Transit-time flow measurement as a predictor of coronary bypass graft failure at one year angiographic follow-up. J. Card. Surg. 2015;30:47–52. doi: 10.1111/jocs.12471.
    1. D'Ancona G, et al. Graft revision after transit time flow measurement in off-pump coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 2000;17:287–293. doi: 10.1016/S1010-7940(00)00332-8.
    1. Walpoth BH, et al. Transit-time flow measurement for detection of early graft failure during myocardial revascularization. Ann. Thorac. Surg. 1998;66:1097–1100. doi: 10.1016/s0003-4975(98)00653-5.
    1. Di Giammarco G, et al. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J. Thorac. Cardiovasc. Surg. 2006;132:468–474. doi: 10.1016/j.jtcvs.2006.02.014.
    1. Lee EH, et al. Prognostic implications of preoperative E/e' ratio in patients with off-pump coronary artery surgery. Anesthesiology. 2012;116:362–371. doi: 10.1097/ALN.0b013e3182426ed6.
    1. Plass KG. A new ultrasonic flowmeter for intravascular application. IEEE Trans. Biomed. Eng. 1964;11:154–156. doi: 10.1109/tbme.1964.4502325.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Mack MJ. Intraoperative coronary graft assessment. Curr. Opin. Cardiol. 2008;23:568–572. doi: 10.1097/HCO.0b013e3283121cbf.
    1. Letcher RL, Chien S, Pickering TG, Sealey JE, Laragh JH. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration. Am. J. Med. 1981;70:1195–1202. doi: 10.1016/0002-9343(81)90827-5.
    1. Fowkes FG, et al. The relationship between blood viscosity and blood pressure in a random sample of the population aged 55 to 74 years. Eur. Heart J. 1993;14:597–601. doi: 10.1093/eurheartj/14.5.597.
    1. Gori T, et al. The distribution of whole blood viscosity, its determinants and relationship with arterial blood pressure in the community: cross-sectional analysis from the Gutenberg Health Study. Ther. Adv. Cardiovasc. Dis. 2015;9:354–365. doi: 10.1177/1753944715589887.
    1. Wijins W. Guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Eur. Heart J. 2010;31:2501–2555. doi: 10.1093/eurheartj/ehq277.
    1. Wu YF, Hsu PS, Tsai CS, Pan PC, Chen YL. Significantly increased low shear rate viscosity, blood elastic modulus, and RBC aggregation in adults following cardiac surgery. Sci. Rep. 2018;8:7173. doi: 10.1038/s41598-018-25317-8.
    1. Asimakopoulos G, Smith PL, Ratnatunga CP, Taylor KM. Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. Ann. Thorac. Surg. 1999;68:1107–1115. doi: 10.1016/s0003-4975(99)00781-x.
    1. Lowe GD. Blood viscosity and cardiovascular disease. Thromb. Haemost. 1992;67:494–498. doi: 10.1055/s-0038-1648479.
    1. Becker RC. The role of blood viscosity in the development and progression of coronary artery disease. Cleve Clin. J. Med. 1993;60:353–358. doi: 10.3949/ccjm.60.5.353.
    1. Kesmarky G, Toth K, Habon L, Vajda G, Juricskay I. Hemorheological parameters in coronary artery disease. Clin. Hemorheol. Microcirc. 1998;18:245–251.
    1. Yarnell JW, Patterson CC, Sweetnam PM, Lowe GD. Haemostatic/inflammatory markers predict 10-year risk of IHD at least as well as lipids: the Caerphilly collaborative studies. Eur. Heart J. 2004;25:1049–1056. doi: 10.1016/j.ehj.2004.04.011.
    1. Jeong SK, Cho YI, Duey M, Rosenson RS. Cardiovascular risks of anemia correction with erythrocyte stimulating agents: should blood viscosity be monitored for risk assessment? Cardiovasc. Drugs Ther. 2010;24:151–160. doi: 10.1007/s10557-010-6239-7.
    1. Sloop G, Holsworth RE, Jr, Weidman JJ, St Cyr JA. The role of chronic hyperviscosity in vascular disease. Ther. Adv. Cardiovasc. Dis. 2015;9:19–25. doi: 10.1177/1753944714553226.
    1. Al Suwaidi J, Higano ST, Holmes DR, Jr, Lennon R, Lerman A. Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J. Am. Coll. Cardiol. 2001;37:1523–1528. doi: 10.1016/S0735-1097(01)01212-8.
    1. Ziccardi P, et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation. 2002;105:804–809. doi: 10.1161/hc0702.104279.
    1. Csige I, et al. The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018;2018:3407306. doi: 10.1155/2018/3407306.
    1. Poirier P, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918. doi: 10.1161/CIRCULATIONAHA.106.171016.
    1. Halberg N, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell Biol. 2009;29:4467–4483. doi: 10.1128/MCB.00192-09.
    1. Kadowaki T, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006;116:1784–1792. doi: 10.1172/JCI29126.
    1. Bagi Z, Broskova Z, Feher A. Obesity and coronary microvascular disease—implications for adipose tissue-mediated remote inflammatory response. Curr. Vasc. Pharmacol. 2014;12:453–461. doi: 10.2174/1570161112666140423221843.
    1. McEvoy JW, et al. Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control. J. Am. Coll. Cardiol. 2016;68:1713–1722. doi: 10.1016/j.jacc.2016.07.754.
    1. Richard E, Klabunde P. Cardiovascular Physiology Concepts. 2. Philadelphia: Lippincott Williams & Wilkins; 2012.
    1. Ramanathan T, Skinner H. Coronary blood flow. Crit. Care Pain. 2005;5:61–64.

Source: PubMed

3
購読する