Characterization of baseline polybacterial versus monobacterial infections in three randomized controlled bacterial conjunctivitis trials and microbial outcomes with besifloxacin ophthalmic suspension 0.6

Heleen H DeCory, Christine M Sanfilippo, Howard M Proskin, Joseph M Blondeau, Heleen H DeCory, Christine M Sanfilippo, Howard M Proskin, Joseph M Blondeau

Abstract

Background/purpose: To date, studies examining polymicrobial infections in ocular disease have mostly been limited to keratitis or endophthalmitis. We characterized polybacterial infections compared to monobacterial infections in prior clinical studies evaluating besifloxacin ophthalmic suspension 0.6% for the treatment of bacterial conjunctivitis and report on associated microbiological outcomes.

Methods: In this post-hoc analysis, microbiological data for subjects with conjunctivitis due to one or more than one bacterial species in three previous studies (two vehicle-, one active-controlled) of besifloxacin were extracted. Bacterial species identified at baseline were deemed causative if their colony count equaled or exceeded species-specific prespecified threshold criteria. In subjects with polybacterial infections, the fold-increase over threshold was used to rank order the contribution of individual species. Baseline pathogens and their minimum inhibitory concentrations (MICs) for common ophthalmic antibiotics were compared by infection type, as were microbial eradication rates following treatment with besifloxacin.

Results: Of 1041 subjects with culture-confirmed conjunctivitis, 17% had polybacterial and 83% had monobacterial conjunctivitis at baseline. In polybacterial compared to monobacterial infections, Haemophilus influenzae and Streptococcus pneumoniae were identified less frequently as the dominant infecting species (P = 0.042 and P<0.001, respectively), whereas Streptococcus mitis/S. mitis group was identified more frequently as dominant (P<0.001). Viral coinfection was also identified more frequently in polybacterial infections (P<0.001). Staphylococcus aureus was the most common coinfecting species in polybacterial infections and the second most common dominant species in such infections. With few exceptions, MICs for individual species were comparable regardless of infection type. Clinical microbial eradication rates with besifloxacin were high regardless of infection type (P≤0.016 vs vehicle at follow-up visits).

Conclusions: Approximately one in five subjects with bacterial conjunctivitis are infected with more than one bacterial species underscoring the need for a broad-spectrum antibiotic for such infections. Besifloxacin treatment resulted in robust eradication rates of these infections comparable to monobacterial infections.

Trial registration: NCT000622908, NCT00347932, NCT00348348.

Trial registration: ClinicalTrials.gov NCT00622908 NCT00347932 NCT00348348.

Conflict of interest statement

HD and CS are employees of Bausch Health US, LLC; Dr. H Proskin is an independent statistical consultant and reports receipt of statistical consultation fees from Bausch Health US, LLC for this work. Dr. J Blondeau has no disclosures to report for this current study. This research is associated with the marketed product Besivance® (besifloxacin ophthalmic suspension, 0.6%; Bausch & Lomb Incorporated; Rochester, NY). This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Distribution of subjects.
Fig 1. Distribution of subjects.
Fig 2. Dominant, secondary, tertiary, and quaternary…
Fig 2. Dominant, secondary, tertiary, and quaternary infecting species at baseline in polybacterial conjunctivitis infections.
Dominant bacterial species are shown in the inner ring, whereas secondary, tertiary, and quaternary infecting bacterial species are shown by rank order moving outwards by ring. Only those polybacterial infections in which the same dominant species was identified in more than 5 infections are presented. Co-dominant species are indicated with an asterisk.
Fig 3. Distribution of Minimum Inhibitory Concentrations…
Fig 3. Distribution of Minimum Inhibitory Concentrations (MICs) for besifloxacin and ciprofloxacin against gram-positive and gram-negative isolates from poly- and monobacterial conjunctivitis infections.
A. Gram-positive isolates from polybacterial infections (n = 286), B. Gram-negative isolates from polybacterial infections (n = 101), C. Gram-positive isolates from monobacterial infections (n = 537), and D. Gram-negative isolates from monobacterial infections (n = 327).
Fig 4. Microbial eradication of polybacterial and…
Fig 4. Microbial eradication of polybacterial and monobacterial conjunctivitis with besifloxacin and moxifloxacin.

References

    1. Høvding G. Acute bacterial conjunctivitis. Acta Ophthalmol. 2008;86(1): 5–17. 10.1111/j.1600-0420.2007.01006.x
    1. Rose P. Management strategies for acute infective conjunctivitis in primary care: A systematic review. Expert Opin Pharmacother. 2007;8(12): 1903–1921. 10.1517/14656566.8.12.1903
    1. Varu DM, Rhee MK, Akpek EK, Amescua G, Farid M, Garcia-Ferrer FJ, et al.; American Academy of Ophthalmology Preferred Practice Pattern Cornea and External Disease Panel. Conjunctivitis Preferred Practice Pattern®. Ophthalmology. 2019;26(1): P94–P169.
    1. Leung AKC, Hon KL, Wong AHC, Wong AS. Bacterial conjunctivitis in childhood: etiology, clinical manifestations, diagnosis, and management. Recent Pat Inflamm Allergy Drug Discov. 2018;12(2): 120–127. 10.2174/1872213X12666180129165718
    1. Short FL, Murdoch SL, Ryan RP. Polybacterial human disease: the ills of social networking. Trends Microbiol. 2014;22(9): 508–516. 10.1016/j.tim.2014.05.007
    1. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25(1): 193–213 10.1128/CMR.00013-11
    1. Gabrilska RA, Rumbaugh KP. Biofilm models of polymicrobial infection. Future Microbiol. 2015;10(12): 1997–2015. 10.2217/fmb.15.109
    1. Tay WH, Chong KK, Kline KA. Polymicrobial-host interactions during Infection. J Mol Biol. 2016;428(17): 3355–3371. 10.1016/j.jmb.2016.05.006
    1. Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, et al. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat Microbiol. 2017;2: 17079 10.1038/nmicrobiol.2017.79
    1. Kunimoto DY, Das T, Sharma S, Jalali S, Majji AB, Gopinatan U, et al.; Endophthalmitis Research Group. Microbiologic spectrum and susceptibility of isolates: part I. Postoperative endophthalmitis. Am J Ophthalmol. 1999;128(2): 240–242. 10.1016/s0002-9394(99)00112-9
    1. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol. 2003;87(7): 834–838. 10.1136/bjo.87.7.834
    1. Tuft S. Polymicrobial infection and the eye. Br J Ophthalmol. 2006;90(3): 257–258. 10.1136/bjo.2005.084095
    1. Chen X, Adelman RA. Microbial spectrum and resistance patterns in endophthalmitis: a 21-year (1988–2008) review in northeast United States. J Ocul Pharmacol Ther. 2012;28(4): 329–334. 10.1089/jop.2011.0204
    1. Lim NC, Lim DK, Ray M. Polymicrobial versus monomicrobial keratitis: a retrospective comparative study. Eye Contact Lens. 2013;39(5): 348–354. 10.1097/ICL.0b013e3182a3024e
    1. Hooi SH, Hooi ST. Culture-proven bacterial keratitis in a Malaysian general hospital. Med J Malaysia. 2005;60(5): 614–623.
    1. Stefan C, Nenciu A. Post-traumatic bacterial keratitis—a microbiological prospective clinical study. Oftalmologia. 2006;50(3): 118–122.
    1. Preechawat P, Ratananikom U, Lerdvitayasakul R, Kunavisarut S. Contact lens-related microbial keratitis. J Med Assoc Thai. 2007;90(4): 737–743.
    1. Termote K, Joe AW, Butler AL, McCarthy M, Blondeau JM, Iovieno A, et al. Epidemiology of bacterial corneal ulcers at tertiary centres in Vancouver, B.C. Can J Ophthalmol. 2018;53(4): 330–336. 10.1016/j.jcjo.2017.11.001
    1. Sowmya P, Madhavan HN. Diagnostic utility of polymerase chain reaction on intraocular specimens to establish the etiology of infectious endophthalmitis. Eur J Ophthalmol. 2009;19(5): 812–817. 10.1177/112067210901900520
    1. Pijl BJ, Theelen T, Tilanus MA, Rentenaar R, Crama N. Acute endophthalmitis after cataract surgery: 250 consecutive cases treated at a tertiary referral center in the Netherlands. Am J Ophthalmol. 2010;149(3): 482–487. e1–2. 10.1016/j.ajo.2009.09.021
    1. Bhattacharjee H, Bhattacharjee K, Gogoi K, Singh M, Singla BG, Yadav A. Microbial profile of the vitreous aspirates in culture proven exogenous endophthalmitis: A 10-year retrospective study. Indian J Med Microbiol. 2016;34(2): 153–158. 10.4103/0255-0857.180280
    1. Wong T, Ormonde S, Gamble C, McGhee CNJ. Severe infective keratitis leading to hospital admission in New Zealand. Br J Ophthalmol. 2003;87(9): 1103–1108. 10.1136/bjo.87.9.1103
    1. Galvis V, Tello A, Guerra A, Acuña MF, Villarreal D. [Antibiotic susceptibility patterns of bacteria isolated from keratitis and intraocular infections at fundación oftalmológica de santander (foscal), Floridablanca, Colombia]. Biomedica. 2014;34(Suppl 1): 22–33.
    1. Jayasudha R, Narendran V, Manikandan P, Prabagaran SR. Identification of polybacterial communities in patients with postoperative, posttraumatic, and endogenous endophthalmitis through 16S rRNA gene libraries. J Clin Microbiol. 2014;52(5): 1459–1466. 10.1128/JCM.02093-13
    1. Asbell PA, Sanfilippo CM, Sahm DF, DeCory HH. Trends in antibiotic resistance among ocular microorganisms in the United States from 2009 to 2018. JAMA Ophthalmol. 2020;138(5): 1–12.
    1. Haas W, Pillar CM, Zurenko GE, Lee JC, Brunner LS, Morris TW. Besifloxacin, a novel fluoroquinolone, has broad-spectrum in vitro activity against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 2009;3(8): 3552–3560.
    1. Haas W, Gearinger LS, Usner DW, Decory HH, Morris TW. Integrated analysis of three bacterial conjunctivitis trials of besifloxacin ophthalmic suspension, 0.6%: etiology of bacterial conjunctivitis and antibacterial susceptibility profile. Clin Ophthalmol. 2011;5: 1369–1379. 10.2147/OPTH.S23519
    1. Haas W, Pillar CM, Hesje CK, Sanfilippo CM, Morris TW. Bactericidal activity of besifloxacin against staphylococci, Streptococcus pneumoniae and Haemophilus influenzae. J Antimicrob Chemother. 2010;65(7): 1441–1447. 10.1093/jac/dkq127
    1. Haas W, Pillar CM, Hesje CK, Sanfilippo CM, Morris TW. In vitro time–kill experiments with besifloxacin, moxifloxacin and gatifloxacin in the absence and presence of benzalkonium chloride. J Antimicrob Chemother. 2011;66(4): 840–844. 10.1093/jac/dkq531
    1. Haas W, Sanfilippo CM, Hesje CK, Morris TW. Contribution of the R8 substituent to the in vitro antibacterial potency of besifloxacin and comparator ophthalmic fluoroquinolones. Clin Ophthalmol. 2013;7: 821–830. 10.2147/OPTH.S44085
    1. Tepedino ME, Heller WH, Usner DW, Brunner LS, Morris TW, Haas W, et al. Phase III efficacy and safety study of besifloxacin ophthalmic suspension 0.6% in the treatment of bacterial conjunctivitis. Curr Med Res Opin. 2009;25(5): 1159–1169. 10.1185/03007990902837919
    1. McDonald MB, Protzko EE, Brunner LS, Morris TW, Haas W, Paterno MR, et al. Efficacy and safety of besifloxacin ophthalmic suspension 0.6% compared with moxifloxacin ophthalmic solution 0.5% for treating bacterial conjunctivitis. Ophthalmology. 2009;116(9): 1615–1623.e1. 10.1016/j.ophtha.2009.05.014
    1. Karpecki P, Depaolis M, Hunter JA, White EM, Rigel L, Brunner LS, et al. Besifloxacin ophthalmic suspension 0.6% in patients with bacterial conjunctivitis: A multicenter, prospective, randomized, double-masked, vehicle-controlled, 5-day efficacy and safety study. Clin Ther. 2009;31(3): 514–526. 10.1016/j.clinthera.2009.03.010
    1. Silverstein BE, Morris TW, Gearinger LS, DeCory HH, Comstock TL. Besifloxacin ophthalmic suspension 0.6% in the treatment of bacterial conjunctivitis patients with Pseudomonas aeruginosa infections. Clin Ophthalmol. 2012;6: 1987–1996. 10.2147/OPTH.S35715
    1. Malhotra R, Ackerman S, Gearinger LS, Morris TW, Allaire C. The safety of besifloxacin ophthalmic suspension 0.6% used three times daily for 7 days in the treatment of bacterial conjunctivitis. 2013;13(4): 243–252.
    1. Wang J-J, Gao X-Y, Li H-Z, Du S-S. Treating with besifloxacin for acute bacterial conjunctivitis: a meta-analysis. Int J Ophthalmol. 2019;12(12): 1898–1907. 10.18240/ijo.2019.12.13
    1. Morris TW, Gearinger LS, Usner DW, Paterno MR, DeCory HH, Comstock TL, et al. Integrated analysis of three bacterial conjunctivitis trials of besifloxacin ophthalmic suspension, 0.6%: microbiological eradication outcomes. Clin Ophthalmol. 2011;5: 1359–1367. 10.2147/OPTH.S23518
    1. Cagle G, Davis S, Rosenthal A, Smith J. Topical tobramycin and gentamicin sulfate in the treatment of ocular infections: multicenter study. Curr Eye Res. 1981;1(9): 523–534. 10.3109/02713688109069178
    1. Leibowitz HM. Antibacterial effectiveness of ciprofloxacin 0.3% ophthalmic solution in the treatment of bacterial conjunctivitis. Am J Ophthalmol. 1991;112(Suppl 4): 29S–33S.
    1. Haas W, Hesje CK, Sanfilippo CM, Morris TW. High proportion of nontypeable Streptococcus pneumoniae isolates among sporadic, nonoutbreak cases of bacterial conjunctivitis. Curr Eye Res. 2011;36(12): 1078–1085. 10.3109/02713683.2011.624670
    1. Schabereiter-Gurtner C, Maca S, Rölleke S, Nigl K, Lukas J, Hirschl A, et al. 16S rDNA-based identification of bacteria from conjunctival swabs by PCR and DGGE fingerprinting. Invest Ophthalmol Vis Sci. 2001;42(6): 1164–1171.
    1. Iwalokun BA, Oluwadun A, Akinsinde KA, Niemogha MT, Nwaokorie FO. Bacteriologic and plasmid analysis of etiologic agents of conjunctivitis in Lagos, Nigeria. J Ophthalmic Inflamm Infect. 2011;1(3): 95–103. 10.1007/s12348-011-0024-z
    1. Aoki R, Fukuda K, Ogawa M, Ikeno T, Kondo H, Tawara A, et al. Identification of causative pathogens in eyes with bacterial conjunctivitis by bacterial cell count and microbiota analysis. Ophthalmology. 2013;120(4): 668–676. 10.1016/j.ophtha.2012.10.001
    1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11): 5721–5732. 10.1128/JCM.43.11.5721-5732.2005
    1. Rasmussen LH, Højholt K, Dargis R, Christensen JJ, Skovgaard O, Justesen US, et al. In silico assessment of virulence factors in strains of Streptococcus oralis and Streptococcus mitis isolated from patients with Infective Endocarditis. J Med Microbiol. 2017;66: 1316–1323. 10.1099/jmm.0.000573
    1. Douglas CW, Heath J, Hampton KK, Preston FE. Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol. 1993;39(3): 179–182. 10.1099/00222615-39-3-179
    1. Renton BJ, Clague JE, Cooke RP. Streptococcus oralis endocarditis presenting as infective discitis in an edentulous patient. Int J Cardiol. 2009;137(1): e13–e14. 10.1016/j.ijcard.2008.05.040
    1. Mitchell J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol. 2011;26(2): 89–98. 10.1111/j.2041-1014.2010.00601.x
    1. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25(1): 2–41. 10.1128/CMR.00019-11
    1. Silvester A, Neal T, Czanner G, Briggs M, Harding S, Kaye S. Adult bacterial conjunctivitis: resistance patterns over 12 years in patients attending a large primary eye care centre in the UK. BMJ Open Ophthalmol. 2016;1(1):e000006
    1. Shrestha SP, Khadka J, Pokhrel AK, Sathian B. Acute bacterial conjunctivitis—antibiotic susceptibility and resistance to commercially available topical antibiotics in Nepal. Nepal J Ophthalmol. 2016;8(15):23–35.
    1. Asbell PA, DeCory HH. Antibiotic resistance among bacterial conjunctival pathogens collected in the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study. PLoS One. 2018;13(10): e0205814 10.1371/journal.pone.0205814
    1. Bhattacharyya A, Sarma P, Sarma B, Kumar S, Gogoi T, Kaur H, et al. Bacteriological pattern and their correlation with complications in culture positive cases of acute bacterial conjunctivitis in a tertiary care hospital of upper Assam: A cross sectional study. 2020;99(7): e18570.
    1. Hendricks KJ, Burd TA, Anglen JO, Simpson AW, Christensen GD, Gainor BJ. Synergy between Staphylococcus aureus and Pseudomonas aeruginosa in a rat model of complex orthopaedic wounds. J Bone Joint Surg Am. 2001;83(6): 855–861. 10.2106/00004623-200106000-00006
    1. Bousbia S, Raoult D, La Scola B. Pneumonia pathogen detection and microbial interactions in polymicrobial episodes. Future Bicrobiol. 2013;8(5): 633–660.
    1. Shak JR, Vidal JE, Klugman KP. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx. Trends Microbiol. 2013;21(3): 129–135. 10.1016/j.tim.2012.11.005
    1. Nguyen AT, Oglesby-Sherrouse AG. Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections. Appl Microbiol Biotechnol. 2016;100(14): 6141–6148. 10.1007/s00253-016-7596-3
    1. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2(5): 445–459. 10.4161/viru.2.5.17724
    1. Catalanotti P, Lanza M, Del Prete A, Lucido M, Catania MR, Gallè F, et al. Slime-producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers. New Microbiol. 2005;28(4): 345–454.
    1. Murugan K, Usha M, Malathi P, Al-Sohaibani AS, Chandrasekaran M. Biofilm forming multi drug resistant Staphylococcus spp. among patients with conjunctivitis. Pol J Microbiol. 2010;59(4): 233–239.
    1. Flores-Páez LA, Zenteno JC, Alcántar-Curiel MD, Vargas-Mendoza CF, Rodríguez-Martínez S, Cancino-Diaz ME, et al. Molecular and Phenotypic Characterization of Staphylococcus epidermidis Isolates from Healthy Conjunctiva and a Comparative Analysis with Isolates from Ocular Infection. PLoS One. 2015;10(8): e0135964 10.1371/journal.pone.0135964
    1. Fariña N, Samudio M, Carpinelli L, Nentwich MM, de Kaspar HM. Methicillin resistance and biofilm production of Staphylococcus epidermidis isolates from infectious and normal flora conjunctiva. Int Ophthalmol. 2017;37(4): 819–825. 10.1007/s10792-016-0339-8
    1. Elkhashab THT, Adel LA, Nour MS, Mahran M, Elkaffas M. Association of intercellular adhesion gene A with biofilm formation in staphylococci isolates from patients with conjunctivitis. J Lab Physicians. 2018;0(3): 309–315.
    1. Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol. 2018;9: 2640 10.3389/fimmu.2018.02640
    1. Cambau E, Matrat S, Pan XS, Roth Dit Bettoni R, Corbel C, Aubry A, et al. Target specificity of the new fluoroquinolone besifloxacin in Streptococcus pneumoniae, Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother. 2009;63(3): 443–450. 10.1093/jac/dkn528
    1. Miller D, Chang JS, Flynn HW, Alfonso EC. Comparative in vitro susceptibility of besifloxacin and seven comparators against ciprofloxacin- and methicillin-susceptible/nonsusceptible staphylococci. J Ocul Pharmacol Ther. 2013;29(3): 339–344. 10.1089/jop.2012.0081

Source: PubMed

3
購読する