Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR

Alessandra Mangolini, Manuela Ferracin, Maria Vittoria Zanzi, Elena Saccenti, Sayda Omer Ebnaof, Valentina Vultaggio Poma, Juana M Sanz, Angela Passaro, Massimo Pedriali, Antonio Frassoldati, Patrizia Querzoli, Silvia Sabbioni, Paolo Carcoforo, Alan Hollingsworth, Massimo Negrini, Alessandra Mangolini, Manuela Ferracin, Maria Vittoria Zanzi, Elena Saccenti, Sayda Omer Ebnaof, Valentina Vultaggio Poma, Juana M Sanz, Angela Passaro, Massimo Pedriali, Antonio Frassoldati, Patrizia Querzoli, Silvia Sabbioni, Paolo Carcoforo, Alan Hollingsworth, Massimo Negrini

Abstract

Background: Breast cancer circulating biomarkers include carcinoembryonic antigen and carbohydrate antigen 15-3, which are used for patient follow-up. Since sensitivity and specificity are low, novel and more useful biomarkers are needed. The presence of stable circulating microRNAs (miRNAs) in serum or plasma suggested a promising role for these tiny RNAs as cancer biomarkers. To acquire an absolute concentration of circulating miRNAs and reduce the impact of preanalytical and analytical variables, we used the droplet digital PCR (ddPCR) technique.

Results: We investigated a panel of five miRNAs in the sera of two independent cohorts of breast cancer patients and disease-free controls. The study showed that miR-148b-3p and miR-652-3p levels were significantly lower in the serum of breast cancer patients than that in controls in both cohorts. For these two miRNAs, the stratification of breast cancer patients versus controls was confirmed by receiver operating characteristic curve analyses. In addition, we showed that higher levels of serum miR-10b-5p were associated with clinicobiological markers of poor prognosis.

Conclusions: The study revealed the usefulness of the ddPCR approach for the quantification of circulating miRNAs. The use of the ddPCR quantitative approach revealed very good agreement between two independent cohorts in terms of comparable absolute miRNA concentrations and consistent trends of dysregulation in breast cancer patients versus controls. Overall, this study supports the use of the quantitative ddPCR approach for monitoring the absolute levels of diagnostic and prognostic tumor-specific circulating miRNAs.

Keywords: Breast cancer; Circulating miRNAs; Diagnostic markers; Droplet digital PCR; Prognostic markers.

Figures

Fig. 1
Fig. 1
Levels of miRNAs in sera of two independent cohorts of breast cancer and disease-free patients. The level of each miRNA was measured by the ddPCR technique and expressed in copies per microliter in each sample. Each miRNA displays comparable levels and consistent dysregulation in both cohorts. miR-652-3p and miR-148b-3p exhibited a statistically significant reduction in breast cancer patients in both cohorts. The unpaired t-test with Welch’s correction was performed to assess significance of differences between patient and control groups. P-values of less than 0.05 were deemed to be significant. BRCA breast cancer patients
Fig. 2
Fig. 2
Diagnostic potential of miR-148b and miR-652. Receiver operating characteristic (ROC) curve analyses show that miR-148b and miR-652 exhibit a significant ability to predict breast cancer in both cohorts. Binary logistic regression analysis was performed and ROC curves were generated to evaluate the ability of chosen miRNAs to distinguish cancer patients from controls. AUC area under the curve, CI confidence interval
Fig. 3
Fig. 3
Serum miR-10b-5p increases in patients presenting poor prognostic parameters. a Levels of miR-10b increased progressively according to tumor stage. Levels from patients with stages II-IV cancer exhibit a significant difference in comparison to those from patients with stage I cancer (p = 0.0047) or controls (p = 0.0028). The diagnostic value of miR-10b was assessed by receiver operating characteristic curve analysis. No significant difference was found between stage I and controls. BRCA breast cancer patients, AUC area under the curve. b Higher levels of miR-10b were associated with various clinicopathological parameters: lymph node metastasis (pN) (p = 0.014) and tumor grade (p = 0.026). Albeit not statistically significant, a trend toward increased levels of miR-10b was also detected in cases characterized by increased tumor size (pT) or as being human epidermal growth factor receptor 2 positive (HER2+) or estrogen receptor/progesterone receptor negative (ER-/PR-). “PRE” or “POST” refer to the menopausal status

References

    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. doi: 10.3322/caac.20107.
    1. Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, et al. SEER Cancer Statistics Review, 1975–2011. National Cancer Institute: Bethesda, MD; 2014.
    1. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol. 2012;198:W292–5. doi: 10.2214/AJR.10.6049.
    1. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312. doi: 10.1200/JCO.2007.14.2364.
    1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97. doi: 10.1016/S0092-8674(04)00045-5.
    1. Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in human cancer: from research to therapy. J Cell Sci. 2007;120:1833–40. doi: 10.1242/jcs.03450.
    1. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8. doi: 10.1073/pnas.0804549105.
    1. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–33. doi: 10.1093/nar/gkr254.
    1. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5. doi: 10.1111/j.1365-2141.2008.07077.x.
    1. Roth C, Rack B, Muller V, Janni W, Pantel K, Schwarzenbach H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010;12:R90. doi: 10.1186/bcr2766.
    1. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One. 2010;5 doi: 10.1371/journal.pone.0013735.
    1. Jarry J, Schadendorf D, Greenwood C, Spatz A, van Kempen LC. The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol Oncol. 2014;8:819–29. doi: 10.1016/j.molonc.2014.02.009.
    1. Ferracin M, Lupini L, Salamon I, Saccenti E, Musa G, Zagatti B, et al. Absolute quantification of cell-free microRNAs in cancer patients. Oncotarget 2015, in press.
    1. McDermott AM, Miller N, Wall D, Martyn LM, Ball G, Sweeney KJ, et al. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One. 2014;9:e87032. doi: 10.1371/journal.pone.0087032.
    1. Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer. 2013;132:1602–12. doi: 10.1002/ijc.27799.
    1. Mar-Aguilar F, Mendoza-Ramirez JA, Malagon-Santiago I, Espino-Silva PK, Santuario-Facio SK, Ruiz-Flores P, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers. 2013;34:163–9. doi: 10.1155/2013/259454.
    1. Kodahl AR, Lyng MB, Binder H, Cold S, Gravgaard K, Knoop AS, et al. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol. 2014;8:874–83. doi: 10.1016/j.molonc.2014.03.002.
    1. Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8:e64795. doi: 10.1371/journal.pone.0064795.
    1. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11:809–15. doi: 10.1038/nmeth.3014.
    1. Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn. 2013;15:827–34. doi: 10.1016/j.jmoldx.2013.07.005.
    1. Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem. 2013;59:1670–2. doi: 10.1373/clinchem.2013.211045.
    1. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5. doi: 10.1038/nmeth.2633.
    1. Miotto E, Saccenti E, Lupini L, Callegari E, Negrini M, Ferracin M. Quantification of circulating mirnas by droplet digital PCR: comparison of evagreen- and taqman-based chemistries. Cancer Epidemiol Biomarkers Prev. 2014;23:2638–42. doi: 10.1158/1055-9965.EPI-14-0503.
    1. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem. 2012;84:1003–11. doi: 10.1021/ac202578x.
    1. Chan M, Liaw CS, Ji SM, Tan HH, Wong CY, Thike AA, et al. Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res. 2013;19:4477–87. doi: 10.1158/1078-0432.CCR-12-3401.
    1. Ng EK, Li R, Shin VY, Jin HC, Leung CP, Ma ES, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8:e53141. doi: 10.1371/journal.pone.0053141.
    1. Zhao FL, Hu GD, Wang XF, Zhang XH, Zhang YK, Yu ZS. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res. 2012;40:859–66. doi: 10.1177/147323001204000304.
    1. Etheridge A, Gomes CP, Pereira RW, Galas D, Wang K. The complexity, function and applications of RNA in circulation. Front Genet. 2013;4:115. doi: 10.3389/fgene.2013.00115.
    1. Cuk K, Zucknick M, Madhavan D, Schott S, Golatta M, Heil J, et al. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One. 2013;8:e76729. doi: 10.1371/journal.pone.0076729.
    1. Shen J, Hu Q, Schrauder M, Yan L, Wang D, Medico L, et al. Circulating miR-148b and miR-133a as biomarkers for breast cancer detection. Oncotarget. 2014;5:5284–94.
    1. Chen W, Cai F, Zhang B, Barekati Z, Zhong XY. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol. 2013;34:455–62. doi: 10.1007/s13277-012-0570-5.
    1. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28:341–7. doi: 10.1038/nbt.1618.
    1. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8. doi: 10.1038/nature06174.
    1. Biagioni F, Bossel Ben-Moshe N, Fontemaggi G, Yarden Y, Domany E, Blandino G. The locus of microRNA-10b: a critical target for breast cancer insurgence and dissemination. Cell Cycle. 2013;12:2371–5. doi: 10.4161/cc.25380.
    1. Liu Y, Zhao J, Zhang PY, Zhang Y, Sun SY, Yu SY, et al. MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med Sci Monit. 2012;18:BR299–308.
    1. Plummer PN, Freeman R, Taft RJ, Vider J, Sax M, Umer BA, et al. MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res. 2013;73:341–52. doi: 10.1158/0008-5472.CAN-12-0271.

Source: PubMed

3
購読する