Auricular Neuromodulation for Mass Vagus Nerve Stimulation: Insights From SOS COVID-19 a Multicentric, Randomized, Controlled, Double-Blind French Pilot Study

Claire-Marie Rangon, Régine Barruet, Abdelmadjid Mazouni, Chloé Le Cossec, Sophie Thevenin, Jessica Guillaume, Teddy Léguillier, Fabienne Huysman, David Luis, Claire-Marie Rangon, Régine Barruet, Abdelmadjid Mazouni, Chloé Le Cossec, Sophie Thevenin, Jessica Guillaume, Teddy Léguillier, Fabienne Huysman, David Luis

Abstract

Importance: An exacerbated inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is believed to be one of the major causes of the morbidity and mortality of the coronavirus disease 2019 (COVID-19). Neuromodulation therapy, based on vagus nerve stimulation, was recently hypothesized to control both the SARS-CoV-2 replication and the ensuing inflammation likely through the inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and could improve the clinical outcomes as an adjunct treatment. We proposed to test it by the stimulation of the auricular branch of the vagus nerve, i.e., auricular neuromodulation (AN), a non-invasive procedure through the insertion of semipermanent needles on the ears. Objective: The aim of this study was to assess the effect of AN on the clinical outcomes in patients affected by COVID-19. Design, Setting, and Participants: A multicenter, randomized, placebo-controlled, double-blind clinical trial included 31 patients with respiratory failure due to COVID-19 requiring hospitalization. Within 72 h after admission, patients received either AN (n = 14) or sham neuromodulation (SN, n = 15) in addition to the conventional treatments. Main Outcome and Measures: The primary endpoint of the study was the rate of a clinical benefit conferred by AN at Day 14 (D14) as assessed by a 7-point Clinical Progression Scale. The secondary endpoint of the study was the impact of AN on the rate of transfer to the intensive care unit (ICU) and on the survival rate at D14. Results: The AN procedure was well-tolerated without any reported side effects but with no significant improvement for the measures of both primary (p > 0.3) and secondary (p > 0.05) endpoints at the interim analysis. None of the AN-treated patients died but one in the SN group did (81 years). Two AN-treated patients (73 and 79 years, respectively) and one SN-treated patient (59 years) were transferred to ICU. Remarkably, AN-treated patients were older with more representation by males than in the SN arm (i.e., the median age of 75 vs. 65 years, 79% male vs. 47%). Conclusion: The AN procedure, which was used within 72 h after the admission of patients with COVID-19, was safe and could be successfully implemented during the first two waves of COVID-19 in France. Nevertheless, AN did not significantly improve the outcome of the patients in our small preliminary study. It is pertinent to explore further to validate AN as the non-invasive mass vagal stimulation solution for the forthcoming pandemics. Clinical Trial Registration: [https://ichgcp.net/clinical-trials-registry/NCT04341415" title="See in ClinicalTrials.gov">NCT04341415].

Keywords: COVID-19; NF-κB; auricular neuromodulation; cholinergic anti-inflammatory pathway; non-invasive neuromodulation; pandemics; vagus nerve stimulation.

Conflict of interest statement

SEDATELEC gave financial support. The authors declare that the research was conducted with conflict of interest.

Copyright © 2021 Rangon, Barruet, Mazouni, Le Cossec, Thevenin, Guillaume, Léguillier, Huysman and Luis.

Figures

Figure 1
Figure 1
The semipermanent needles (SPNs). (A) SPN packaging. (B) Close-up of a SPN inside its sterile blister. (C) Close-up of a SPN ready to be inserted in the skin of the outer ear. (D) The three-step procedure for SPN insertion: (1) the blister is placed on the disinfected skin point, (2) a pressure exerted on the blister delivers the SPN inside the skin, and (3) the SPN is once again sinked using the bottom end of the blister (images from SedatelecR, Irigny, France).
Figure 2
Figure 2
Neuromodulation with SPNs on the concha. (A) Localization of the four selected acupoints, represented as green circles, of the concha, following the order indicated by the number in the circle: (1) master point of endoderm, (2) master point of reticular formation, (3) thymic plexus, and (4) ACTH point (i.e., ear maps according to Alimi, 2017). Each acupoint is either implanted with SPNs (verum group) or pressed on with the empty needle applicator (sham group). (B) The white square symbolizes the opaque Band-Aid allowing double-blind treatment. Both ears of the patients receive same neuromodulation treatment (i.e., verum or sham group). With the permission of SedatelecR.
Figure 3
Figure 3
Study flowchart.

References

    1. Alimi D. (2017). L'auriculothérapie médicale: bases scientifiques, principes et stratégies thérapeutiques. Le Kremlin Bicêtre: Elsevier Edition. p. 92–9.
    1. Andersson U., Tracey K. J. (2012). Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30, 313–335. 10.1146/annurev-immunol-020711-075015
    1. Aragon-Benedi C., Oliver-Fornies P., Galluccio F., Altinpulluk E. Y., Ergonenc T., El Sayed Allam A., et al. . (2021). Is the heart rate variability monitoring using the analgesia nociception index a predictor of illness severity and mortality in critically ill patients with COVID-19? A pilot study. PLos ONE 16:e0249128. 10.1371/journal.pone.0249128
    1. Arai Y. C. P., Sakakima Y., Kawanishi J., Nishihara M., Ito A., Tawada Y., et al. . (2013). Auricular acupuncture at the “shenmen” and “point zero” points induced parasympathetic activation. Evid. Based Complement. Alternat. Med. 2013:945063. 10.1155/2013/945063
    1. Azabou E., Bao G., Bounab R., Heming N., Annane D. (2021). Vagus nerve stimulation: a potential adjunct therapy for COVID-19. Front. Med. 8:625836. 10.3389/fmed.2021.625836
    1. Bara G. A., de Ridder D., Maciaczyk J. (2020). Can neuromodulation support the fight against the COVID-19 pandemic? Transcutaneous non-invasive vagal nerve stimulation as a potential targeted treatment of fulminant acute respiratory distress syndrome. Med. Hypotheses 143:110093. 10.1016/j.mehy.2020.110093
    1. Barnaby D. P., Fernando S. M., Herry C. L., Scales N. B., Gallagher E. J., Seely A. J. E. (2019). Heart rate variability, clinical and laboratory measures to predict future deterioration in patients presenting with sepsis. Shock 51, 416–422. 10.1097/SHK.0000000000001192
    1. Bonaz B. (2020a). The vagus nerve and the sympathetic nervous system act in concert to modulate immunity. Brain Behav. Immun. 84, 6–7. 10.1016/j.bbi.2019.11.018
    1. Bonaz B. (2020b). Parameters matter: modulating cytokines using nerve stimulation. Bioelectron. Med. 6:12. 10.1186/s42234-020-00049-1
    1. Bonaz B., Sinniger V., Pellissier S. (2020). Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with COVID-19? Bioelectron. Med. 6:15. 10.1186/s42234-020-00051-7
    1. Borges U., Pfannenstiel M., Tsukahara J., Laborde S., Klatt S., Raab M. (2021). Transcutaneous vagus nerve stimulation via tragus or cymba conchae: are its psychological effects dependent on the stimulation area? Int. J. Psychophysiol. 161, 65–75. 10.1016/j.ijpsycho.2021.01.003
    1. Burger A. M., D'Agostini M., Verkuil B., Van Diest I. (2020). Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 57:e13571. 10.1111/psyp.13571
    1. Butt M. F., Albusoda A., Farmer A. D., Aziz Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236, 588–611. 10.1111/joa.13122
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., et al. . (2020). A trial of Lopinavir-Ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med. 382, 1787–1799. 10.1056/NEJMoa2001282
    1. Chavan S. S., Tracey K. J. (2017). Essential neuroscience in immunology. J. Immunol. 198, 3389–3397. 10.4049/jimmunol.1601613
    1. Chen I. C., Kor C. T., Lin C. H., Kuo J., Tsai J. Z., Ko W. J., et al. . (2018). High-frequency power of heart rate variability can predict the outcome of thoracic surgical patients with acute respiratory distress syndrome on admission to the intensive care unit: a prospective, single-centric, case-controlled study. BMC Anesthesiol. 18:34. 10.1186/s12871-018-0497-5
    1. Chen Y., Klein S. L., Garibaldi B. T., Li H., Wu C., Osevala N. M., et al. . (2021). Aging in COVID-19: vulnerability, immunity and intervention. Ageing Res. Rev. 65:101205. 10.1016/j.arr.2020.101205
    1. Chen Y. S., Lu W. A., Pagaduan J. C., Kuo C. D. (2020). A novel smartphone App for the measurement of ultra-short-term and short-term Heart Rate Variability: validity and reliability study. JMIR Mhealth Uhealth. 8:e18761. 10.2196/18761
    1. Cheng F. Y., Joshi H., Tandon P., freeman R., Reich D. L., Mazumdar M., et al. . (2020). Using machine-learning to predict ICU transfer in hospitalized COVID_19 patients. J. Clin. Med. 9:1668. 10.3390/jcm9061668
    1. Czura C. J., Friedman S. G., Tracey K. J. (2003). Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. J. Endotoxin Res. 9, 409–413. 10.1177/09680519030090060401
    1. De Castilho F. M., Ribeiro A. L., Nobre V., Barros G., De Sousa M. R. (2018). Heart rate variability as a predictor of mortality in sepsis: a systematic review. PLoS ONE 13:e0203487. 10.1371/journal.pone.0203487
    1. De Virgiliis F., Di Giovanni S. (2020). Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19. Nat. Rev. Neurol. 16, 645–652. 10.1038/s41582-020-0402-y
    1. Deng L., Zeng Q., Wang M., Cheng A., Jia R., Chen S., et al. . (2018). Suppression of NF-κB activity: a viral immune evasion mechanism. Viruses 10:409. 10.3390/v10080409
    1. Deng Y., Liu W., Liu K., Fang Y. Y., Shang J., Zhou L., et al. . (2020). Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin. Med. J. 133, 1261–1267. 10.1097/CM9.0000000000000824
    1. Fang S. C., Wu Y. L., Tsai P. S. (2020). Heart rate variability and risk of all-cause death and cardiovascular events in patients with cardiovascular disease: a meta-analysis of cohort studies. Biol. Res. Nurs. 22, 45–56. 10.1177/1099800419877442
    1. Gao X. Y., Liu K., Zhu B., Litscher G. (2012a). Sino-European transcontinental basic and clinical high-tech acupuncture studies-part1: auricular acupuncture increases heart rate variability in anesthetized rats. Evid. Based Complement. Alternat. Med. 2012:817378. 10.1155/2012/817378
    1. Gao X. Y., Wang L., Gaischek I., Michenthaler Y., Zhu B., Litscher G. (2012b). Brain-modulated effects of auricular acupressure on the regulation of autonomic function in healthy volunteers. Evid. Based Complement. Alternat. Med. 2012:714391. 10.1155/2012/714391
    1. Hariharan A., Hakeem A. R., Radhakrishnan S., Reddy M. S., Rela M. (2020). The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 29, 91–100. 10.1007/s10787-020-00773-9
    1. Hasty F., Garcia G., Davila C. H., Wittels S. H., Hendricks S., Chong S. (2020). Heart Rate Variability as a possible predictive marker for acute inflammatory response in COVID-19 patients. Mil Med. 186, e34–e38. 10.1093/milmed/usaa405
    1. He W., Wang X., Shi H., Shang H., Li L., Jing X., et al. . (2012). Auricular acupuncture and vagal regulation. Evid. Based Complement. Alternat. Med. 2012:786839. 10.1155/2012/786839
    1. Hermine O., Mariette X., Tharaux P. L., Resche-Rigon M., Porcher R., Ravaud P., et al. . (2021). Effect of Tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern. Med. 181, 32–40. 10.1001/jamainternmed.2020.6820
    1. Hirano T., Murakami M. (2020). COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity 52, 731–733. 10.1016/j.immuni.2020.04.003
    1. Hsu C. C., Weng C. S., Sun M. F., Shyu L. Y., Hu W. C., Chang Y. H. (2007). Evaluation of scalp and auricular acupuncture on EEG, HRV, and PRV. Am. J. Chin. Med. 35, 219–230. 10.1142/S0192415X0700476X
    1. Izcovich A., Ragusa M. A., Tortosa F., Lavena Marzio M. A., Agnoletti C., Bengolea A., et al. . (2020). Prognosis factors for severity and mortality in patients infected with COVID-19: a systematic review. PLoS ONE 15:e0241955. 10.1371/journal.pone.0241955
    1. Leitzke M., Stefanovic D., Meyer J. J., Schimpf S., Schönknecht P. (2020). Autonomic balance determines the severity of COVID-19 courses. Bioelectron. Med. 6:22. 10.1186/s42234-020-00058-0
    1. Li Y. C., Bai W. Z., Hashikawa T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 92, 552–555. 10.1002/jmv.25728
    1. Liao D., Carnethon M., Evans G. W., Cascio W. E., Heiss G. (2002). Lower heart rate variability is associated with the development of coronary disease in individuals with diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetes 51, 3524–3531. 10.2337/diabetes.51.12.3524
    1. Manganelli F., Vargas M., Iovino A., Iacovazzo C., Santoro L., Servillo G. (2020). Brainstem involvement and respiratory failure in COVID-19. Neurol. Sci. 41, 1663–1665. 10.1007/s10072-020-04487-2
    1. Masaki T., Kojima T., Okabayashi T., Ogasawara N., Okhuni T., Obata K., et al. . (2011). A nuclear factor-KB signaling pathway via protein kinase C δ regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol. Biol. Cell. 22, 2144–2156. 10.1091/mbc.e10-11-0875
    1. Mastitskaya S., Thompson N., Holder D. (2021). Selective Vagus Nerve Stimulation as a therapeutic approach for the treatment of ARDS: a rationale for neuro-immunomodulation in COVID-19 disease. Front. Neurosci. 15:667036. 10.3389/fnins.2021.667036
    1. Mazloom R. (2020). Feasibility of therapeutic effects of the cholinergic anti-inflammatory pathway on COVID-19 symptoms. J. Neuroimmune Pharmacol. 15, 165–166. 10.1007/s11481-020-09919-6
    1. Niemtzow R. C. (2018). Battlefield acupuncture: my story. Med. Acupunct. 30, 57–58. 10.1089/acu.2018.29077.rcn
    1. Niemtzow R. C. (2020). Implementing battlefield acupuncture through a large medical system: overcoming barriers. Med. Acupunct. 32, 377–380. 10.1089/acu.2020.1470
    1. O'Driscoll M., Ribeiro Dos Santos G., Wang L., Cummings D. A. T., Azman A. S., Paireau J., et al. . (2021). Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590, 140–145. 10.1038/s41586-020-2918-0
    1. Oke S. L., Tracey K. J. (2008). From CNI-1493 to the immunological homunculus: physiology of the inflammatory reflex. J. Leukoc. Biol. 83, 512–517. 10.1189/jlb.0607363
    1. Oke S. L., Tracey K. J. (2009). The inflammatory reflex and the role of complementary and alternative medical therapies. Ann. N.Y. Acad. Sci. 1172, 172–180. 10.1196/annals.1393.013
    1. Olofsson P. S., Rosas-Ballina M., Levine Y. A., Tracey K. J. (2012). Rethinking inflammation: neural circuits in the regulation of immunity. Immunol. Rev. 248, 188–204. 10.1111/j.1600-065X.2012.01138.x
    1. O'Mahony C., Van der Kleiji H., Bienenstock J., Shanahan F., O'Mahony L. (2009). Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1118–R1126. 10.1152/ajpregu.90904.2008
    1. Pan Y., Yu Z., Yuan Y., Han J., Wang Z., Chen H., et al. . (2021). Alteration of autonomic nervous system is associated with severity and outcomes in patients with COVID-19. Front. Physiol. 12:630038. 10.3389/fphys.2021.630038
    1. Panebianco M., Rigby A., Weston J., Marson A. G. (2015). Vagus nerve stimulation for partial seizures. Cochrane Database Syst. Rev. 2015:CD002896. 10.1002/14651858.CD002896.pub2
    1. Pavlov V. A. (2021). The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol. Ther. 222:107794. 10.1016/j.pharmthera.2020.107794
    1. Pavlov V. A., Chavan S. S., Tracey K. J. (2020). Bioelectronic medicine: from preclinical studies on the the inflammatory reflex to the new approaches in disease diagnosis and treatment. Cold Spring Harb. Perspect. Med. 10:a034140. 10.1101/cshperspect.a034140
    1. Pavlov V. A., Tracey K. J. (2005). The cholinergic anti-inflammatory pathway. Brain Behav. Immun. 19, 493–499. 10.1016/j.bbi.2005.03.015
    1. Pereira M. R., Leite P. E. (2016). The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J. Cell. Physiol. 231, 1862–1869. 10.1002/jcp.25307
    1. Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15, 35–37. 10.1002/ca.1089
    1. Pomara N., Imbimbo B. P. (2020). Impairment of the cholinergic anti-inflammatory pathway in older subjects with severe COVID-19. Med. Hypotheses 144:110274. 10.1016/j.mehy.2020.110274
    1. Poppe M., Wittig S., Jurida L., Bartkuhn M., Wilhelm J., Müller H., et al. . (2017). The NF-KB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cell. PLoS Pathog. 13:e1006286. 10.1371/journal.ppat.1006286
    1. Qin Z., Xiang K., Su D. F., Sun Y., Liu X. (2021). Activation of the Cholinergic Anti-Inflammatory Pathway as a Novel Therapeutic Strategy for COVID-19. Front. Immunol. 11:595342. 10.3389/fimmu.2020.595342
    1. Rabischong P., Terral C. (2014). Scientific basis of auriculotherapy: state of the art. Med. Acupunct. 26, 84–96. 10.1089/acu.2014.1038
    1. Rangon C. M. (2018). Reconsidering sham in transcutaneous vagus nerve stimulation studies. Clin. Neurophysiol. 129, 2501–2502. 10.1016/j.clinph.2018.08.027
    1. Rangon C. M., Krantic S., Moyse E., Fougere B. (2020). The vagal autonomic pathway of COVID-19 at the crossroad of Alzheimler's disease and aging: a review of knowledge. J. Alzheimers Dis. Rep. 4, 537–551. 10.3233/ADR-200273
    1. Serhan C. N., de la rosa X., Jouvene C. (2018). Cutting edge: human vagus produces specialized proresolving mediators of inflammation with electrical stimulation reducing proinflammatory eicosanoids. J. Immunol. 201, 3161–3165. 10.4049/jimmunol.1800806
    1. Serhan C. N., de la rosa X., Jouvene C. (2019). Novel mediators and mechanisms in the resolution of infectious inflammation: evidence for vagus regulation. J. Intern. Med. 286, 240–258. 10.1111/joim.12871
    1. Shaffer F., Meehan Z. M., Zerr C. L. (2020). A critical review of ultra-short-term Heart Rate Variability norms research. Front. Neurosci. 14:594880. 10.3389/fnins.2020.594880
    1. Signorelli C., Odone A. (2020). Age-specific COVID-19 case-fatality rate: no evidence of changes over time. Int. J. Public Health. 65, 1435–1436. 10.1007/s00038-020-01486-0
    1. Sinniger V., Pellissier S., Fauvelle F., Trocmé C., Hoffmann D., Vercueil L., et al. . (2020). A 12-month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterol. Motil. 32:e13911. 10.1111/nmo.13911
    1. Staats P., Giannakopoulos G., Blake G., Liebler E., Levy R. M. (2020). The use of non-invasive vagus nerve stimulation to treat respiratory symptoms associated with COVID-19: a theoretical hypothesis and early clinical experience. Neuromodulation. 23, 784–788. 10.1111/ner.13172
    1. Sun P., Zhou K., Wang S., Li P., Chen S., Lin G., et al. . (2013). Involvement of MAPK/NF-KB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS ONE 8:e69424. 10.1371/journal.pone.0069424
    1. Tassorelli C., Mojoli F., Baldanti F., Bruno R., Benazzo M. (2020). COVID-19: what if the brain had a role in causing the deaths? Eur. J. Neurol. 27:9. 10.1111/ene.14275
    1. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E. N, Sergentanis T., et al. . (2020). Hematological findings and complications of COVID-19. Am. J. Hematol. 95, 834–847. 10.1002/ajh.25829
    1. Thayer J. F. (2009). Vagal tone and the inflammatory reflex. Cleve. Clin. J. Med. 76(Suppl. 2), S23–S26. 10.3949/ccjm.76.s2.05
    1. Tornero C., Vallejo R., Cedeno D., Orduna J., Pastor E., Belaouchi M., et al. . (2020). A prospective, randomized, controlled study assessing vagus nerve stimulation using the gammaCore-Sapphire device for patients with moderate to severe COVID-)19 respiratory symptoms (SAVIOR): a structured summary of a study protocol for a randomized controlled trial. Trials 21:576. 10.1186/s13063-020-04486-w
    1. Tracey K. J. (2002). The inflammatory reflex. Nature 420, 853–859. 10.1038/nature01321
    1. Usichenko T., Hacker H., Lotze M. (2017). Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture. Brain Stimul. 10, 1042–1044. 10.1016/j.brs.2017.07.013
    1. Verma N., Mudge J. D., Kasole M., Chen R. C., Blanz S. L., Trevathan J. K., et al. . (2021). Auricular Vagus Neuromodulation-A Systematic Review on Quality of Evidence and Clinical Effects. Front. Neurosci. 15:664740. 10.3389/fnins.2021.664740
    1. Volf N., Salques V., Lassaux A. (2020). An auricular marker for COVID-19. Med. Acupunct. 32, 174–175. 10.1089/acu.2020.29151.vlf
    1. Wang D., Cao L., Xu Z., Fang L., Zhong Y., Quangang C., et al. . (2013). MiR-125b reduces porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-KB pathway. PLoS ONE 8:e55838. 10.1371/journal.pone.0055838
    1. Wee B. Y. H., Mok Y. H., Chong S. L. (2020). A narrative review of heart rate variability in sepsis. Ann Transl Med. 8:768. 10.21037/atm-20-148
    1. Williams D. P., Koenig J., Carnevali L., Sgoifo A., Jarczok M. N., Sternberg E. M., et al. . (2019). Heart rate variability and inflammation: a meta-analysis of human studies. Brain Behav. Immun. 80, 219–226. 10.1016/j.bbi.2019.03.009
    1. Yap J. Y. Y., Keatch C., Lambert E., Woods W., Stoddart P. R., Kameneva T. (2020). Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front. Neurosci. 14, 284. 10.3389/fnins.2020.00284
    1. Zhao Y. X., He W., Jing X. H., Liu J. L., Rong P. J., Ben H., et al. . (2012). Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid. Based Complement. Alternat. Med. 2012:627023. 10.1155/2012/627023

Source: PubMed

3
購読する