Hypoxemia in the ICU: prevalence, treatment, and outcome

SRLF Trial Group, D Grimaldi, S Hraiech, E Boutin, J C Lacherade, F Boissier, T Pham, J C Richard, A W Thille, S Ehrmann, J B Lascarrou, N Aissaoui, SRLF Trial Group, D Grimaldi, S Hraiech, E Boutin, J C Lacherade, F Boissier, T Pham, J C Richard, A W Thille, S Ehrmann, J B Lascarrou, N Aissaoui

Abstract

Background: Information is limited regarding the prevalence, management, and outcome of hypoxemia among intensive care unit (ICU) patients. We assessed the prevalence and severity of hypoxemia in ICU patients and analyzed the management and outcomes of hypoxemic patients.

Methods: This is a multinational, multicenter, 1-day point prevalence study in 117 ICUs during the spring of 2016. All patients hospitalized in an ICU on the day of the study could be enrolled. Hypoxemia was defined as a PaO2/FiO2 ratio ≤ 300 mmHg and classified as mild (PaO2/FiO2 between 300 and 201), moderate (PaO2/FiO2 between 200 and 101), and severe (PaO2/FiO2 ≤ 100 mmHg).

Results: Of 1604 patients included, 859 (54%, 95% CI 51-56%) were hypoxemic, 51% with mild (n = 440), 40% with moderate (n = 345), and 9% (n = 74) with severe hypoxemia. Among hypoxemic patients, 61% (n = 525) were treated with invasive ventilation, 10% (n = 84) with non-invasive ventilation, 5% (n = 45) with high-flow oxygen therapy, 22% (n = 191) with standard oxygen, and 1.6% (n = 14) did not receive oxygen. Protective ventilation was widely used in invasively ventilated patients. Twenty-one percent of hypoxemic patients (n = 178) met criteria for acute respiratory distress syndrome (ARDS) including 65 patients (37%) with mild, 82 (46%) with moderate, and 31 (17%) with severe ARDS. ICU mortality was 27% in hypoxemic patients and significantly differed according to severity: 21% in mild, 26% in moderate, and 50% in patients with severe hypoxemia, p < 0.001. Multivariate Cox regression identified moderate and severe hypoxemia as independent factors of ICU mortality compared to mild hypoxemia (adjusted hazard ratio 1.38 [1.00-1.90] and 2.65 [1.69-4.15], respectively).

Conclusions: Hypoxemia affected more than half of ICU patients in this 1-day point prevalence study, but only 21% of patients had ARDS criteria. Severity of hypoxemia was an independent risk factor of mortality among hypoxemic patients. Trial registration NCT 02722031.

Trial registration: ClinicalTrials.gov NCT02722031.

Keywords: ARDS-acute respiratory failure; Critical care; Epidemiology; Hypoxemia; Invasive ventilation.

Figures

Fig. 1
Fig. 1
Flowchart of the study. P/F: PaO2/FiO2 ratio; IV: invasive ventilation, NIV non-invasive ventilation, HFO2: high-flow oxygen therapy, O2: low-flow (standard) oxygen therapy, AA: ambient air
Fig. 2
Fig. 2
Survival curve according to hypoxemia severity. Survival curves were drawn according to the severity of hypoxemia using the Kaplan–Meier method and were compared using the log-rank test. Follow-up ended at the ICU leaving or was censored at day 90

References

    1. Luhr OR, Antonsen K, Karlsson M, Aardal S, Thorsteinsson A, Frostell CG, et al. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. Am J Respir Crit Care Med. 1999;159(6):1849–1861. doi: 10.1164/ajrccm.159.6.9808136.
    1. Vincent J-L, Akça S, De Mendonça A, Haji-Michael P, Sprung C, Moreno R, et al. The epidemiology of acute respiratory failure in critically ill patients (*) Chest. 2002;121(5):1602–1609. doi: 10.1378/chest.121.5.1602.
    1. The FINNALI-Study Group. Linko R, Okkonen M, Pettilä V, Perttilä J, Parviainen I, et al. Acute respiratory failure in intensive care units. FINNALI: a prospective cohort study. Intensive Care Med. 2009;35(8):1352–1361. doi: 10.1007/s00134-009-1519-z.
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788. doi: 10.1001/jama.2016.0291.
    1. Roupie E, Lepage E, Wysocki M, Fagon JY, Chastre J, Dreyfuss D, et al. Prevalence, etiologies and outcome of the acute respiratory distress syndrome among hypoxemic ventilated patients. SRLF Collaborative Group on Mechanical Ventilation. Société de Réanimation de Langue Française. Intensive Care Med. 1999;25(9):920–929. doi: 10.1007/s001340050983.
    1. Brun-Buisson C, Minelli C, Bertolini G, Brazzi L, Pimentel J, Lewandowski K, et al. Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med. 2004;30(1):51–61. doi: 10.1007/s00134-003-2022-6.
    1. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–1693. doi: 10.1056/NEJMoa050333.
    1. Group TICCT Acute lung injury and the acute respiratory distress syndrome in Ireland: a prospective audit of epidemiology and management. Crit Care. 2008;12(1):30. doi: 10.1186/cc6808.
    1. on behalf of the ALIEN Network. Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 2011;37(12):1932–1941. doi: 10.1007/s00134-011-2380-4.
    1. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA [Internet]. 2012 Jun 20 [cited 2017 Oct 6];307(23). Available from: .
    1. Frat J-P, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. Comparison of the SpO2/FiO2 ratio and the PaO2/FiO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–417. doi: 10.1378/chest.07-0617.
    1. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Taylor RW. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291(13):1603. doi: 10.1001/jama.291.13.1603.
    1. Acute Respiratory Distress Syndrome Network Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166(6):801–808. doi: 10.1164/rccm.2108052.
    1. Coudroy R, Frat J-P, Boissier F, Contou D, Robert R, Thille AW. Early identification of acute respiratory distress syndrome in the absence of positive pressure ventilation: implications for revision of the Berlin criteria for acute respiratory distress syndrome. Crit Care Med. 2018;46(4):540–546. doi: 10.1097/CCM.0000000000002929.
    1. Demoule A, Girou E, Richard J-C, Taille S, Brochard L. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006;32(11):1756–1765. doi: 10.1007/s00134-006-0324-1.
    1. Thille AW, Contou D, Fragnoli C, Córdoba-Izquierdo A, Boissier F, Brun-Buisson C. Non-invasive ventilation for acute hypoxemic respiratory failure: intubation rate and risk factors. Crit Care. 2013;17(6):R269. doi: 10.1186/cc13103.
    1. Bellani G, Laffey JG, Pham T, Madotto F, Fan E, Brochard L, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med. 2017;195(1):67–77. doi: 10.1164/rccm.201606-1306OC.
    1. Serpa Neto A, Cardoso SO, Manetta JA, Pereira VGM, Espósito DC, Pasqualucci MDOP, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308(16):1651. doi: 10.1001/jama.2012.13730.
    1. Murray MJ, DeBlock H, Erstad B, Gray A, Jacobi J, Jordan C, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med. 2016;44(11):2079–2103. doi: 10.1097/CCM.0000000000002027.
    1. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Adhikari NKJ, Burns KEA, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334(7597):779. doi: 10.1136/bmj.39139.716794.55.
    1. Ruan S-Y, Wu H-Y, Lin H-H, Wu H-D, Yu C-J, Lai M-S. Inhaled nitric oxide and the risk of renal dysfunction in patients with acute respiratory distress syndrome: a propensity-matched cohort study. Crit Care [Internet]. 2016 Dec [cited 2017 Oct 6];20(1). Available from: .
    1. Ellis RK. Determination of PO2 from saturation. J Appl Physiol (Bethesda Md 1985) 1989;67(2):902. doi: 10.1152/jappl.1989.67.2.902.
    1. Sanz F, Dean N, Dickerson J, Jones B, Knox D, Fernández-Fabrellas E, et al. Accuracy of PaO2/FiO2 calculated from SpO2 for severity assessment in ED patients with pneumonia: PaO2/FiO2 from SpO2 in pneumonia. Respirology. 2015;20(5):813–818. doi: 10.1111/resp.12560.
    1. Laffey JG, Pham T, Bellani G. Continued under-recognition of acute respiratory distress syndrome after the Berlin definition: what is the solution? Curr Opin Crit Care. 2017;23(1):10–17. doi: 10.1097/MCC.0000000000000381.

Source: PubMed

3
購読する