Parent-Reported PEDI-CAT Mobility and Gross Motor Function in Infants With Cerebral Palsy

Kimberley Scott, Jessica Lewis, Xueliang Pan, Jill Heathcock, Kimberley Scott, Jessica Lewis, Xueliang Pan, Jill Heathcock

Abstract

Purpose: The purpose of this study is to determine the relationship between the Pediatric Evaluation of Disability Index-Computer Adapted Test (PEDI-CAT), a parent-reported outcome measure, and therapist-administered measures of motor function for infants with cerebral palsy (CP) with moderate to severe motor impairments.

Methods: A prospective, cohort study included 54 infants, ages 6 to 24 months, with CP or high risk of CP, Gross Motor Function Classification System (GMFCS) levels III to V. Measures included the Gross Motor Function Measure (GMFM) and the mobility domain of the PEDI-CAT (PEDI-mob).

Results: A significant correlation was found between PEDI-mob and GMFM scores. Significant differences were found in PEDI-mob scores as a function of GMFCS level.

Conclusions: The PEDI-mob adds value to motor evaluations of infants with CP. Parents can accurately contribute information about daily motor performance for goal setting and treatment planning. The PEDI-mob offers a practical solution when longer assessments cannot be completed.

Trial registration: ClinicalTrials.gov NCT02857933.

Conflict of interest statement

The authors declare no conflicts of interest.

Copyright © 2021 Academy of Pediatric Physical Therapy of the American Physical Therapy Association.

Figures

Figure 1.
Figure 1.
Scatter plot of GMFM Total Score vs PEDI-mob score for individuals with various GMFCS level
Figure 2.
Figure 2.
PEDI-mob scores and 95% CI across GMFCS levels

References

    1. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.
    1. Report of the Australian Cerebral Palsy Register, Birth Years 1995–2012. Published 2018.
    1. Christensen D, Van Naarden Braun K, Doernberg NS, et al. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - Autism and Developmental Disabilities Monitoring Ne2rk, USA, 2008. Dev Med Child Neurol. 2014;56(1):59–65. doi:10.1111/dmcn.12268
    1. McIntyre S, Morgan C, Walker K, Novak I. Cerebral palsy--don’t delay. Dev Disabil Res Rev. 2011;17(2):114–129. doi:10.1002/ddrr.1106
    1. Novak I, Morgan C, Adde L, et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017;171(9):897–907. doi:10.1001/jamapediatrics.2017.1689
    1. Byrne R, Noritz G, Maitre NL, NCH Early Developmental Group. Implementation of Early Diagnosis and Intervention Guidelines for Cerebral Palsy in a High-Risk Infant Follow-Up Clinic. Pediatr Neurol. 2017;76:66–71. doi:10.1016/j.pediatrneurol.2017.08.002
    1. Hubermann L, Boychuck Z, Shevell M, Majnemer A. Age at Referral of Children for Initial Diagnosis of Cerebral Palsy and Rehabilitation: Current Practices. J Child Neurol. 2016;31(3):364–369. doi:10.1177/0883073815596610
    1. Williams PTJA Jiang Y-Q, Martin JH. Motor system plasticity after unilateral injury in the developing brain. Dev Med Child Neurol. 2017;59(12):1224–1229. doi:10.1111/dmcn.13581
    1. Novak I, Morgan C, Fahey M, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi:10.1007/s11910-020-1022-z
    1. Bronfenbrenner U Ecology of the family as a context for human develoment: research perspectives. Developmental Psychology. 1986;22(6):1844–1867.
    1. Lord C, Rapley T, Marcroft C, Pearse J, Basu A. Determinants of parent-delivered therapy interventions in children with cerebral palsy: A qualitative synthesis and checklist. Child Care Health Dev. 2018;44(5):659–669. doi:10.1111/cch.12592
    1. Bodnarchuk JL, Eaton WO. Can parent reports be trusted? Validity of daily checklists of gross motor milestone attainment. Applied Developmental Psychology. 2004;25:481–490.
    1. Lewis J, Scott K, Pan X, Heathcock J. The Relationship between Parent-reported PEDI-CAT Mobility and Gross Motor Function in Children with Cerebral Palsy: Brief Report. Dev Neurorehabil. 2020;23(2):140–144. doi:10.1080/17518423.2019.1687601
    1. Bresnahan BW, Rundell SD. Including patient-reported outcomes and patient-reported resource-use questionnaires in studies. Acad Radiol. 2014;21(9):1129–1137. doi:10.1016/j.acra.2014.05.008
    1. King G, Chiarello L. Family-centered care for children with cerebral palsy: conceptual and practical considerations to advance care and practice. J Child Neurol. 2014;29(8):1046–1054. doi:10.1177/0883073814533009
    1. Rosenbaum P, Gorter JW. The “F-words” in childhood disability: I swear this is how we should think! Child Care Health Dev. 2012;38(4):457–463. doi:10.1111/j.1365-2214.2011.01338.x
    1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223.
    1. Smits D-W, Gorter JW, Ketelaar M, et al. Relationship between gross motor capacity and daily-life mobility in children with cerebral palsy. Dev Med Child Neurol. 2010;52(3):e60–66. doi:10.1111/j.1469-8749.2009.03525.x
    1. Russell D, Rosenbaum P, Avery L, Lane M. Gross Motor Function Measure (GMFM-66 and GMFM-88) User’s Manual. Mac Keith Press; 2002.
    1. Haley Stephen M., Coster Wendy J., Ludlow Larry H., Haltiwanger Jane T., Andrellos Peter J.. Pediatric Evaluation of Disability Inventory (PEDI). PEDI Research Group; 1992.
    1. Ferrante R, Hendershot S, Baranet K, et al. Daily and Weekly Rehabilitation Delivery for Young Children With Gross Motor Delay: A Randomized Clinical Trial Protocol (the DRIVE Study). Pediatr Phys Ther. 2019;31(2):217–224. doi:10.1097/PEP.0000000000000594
    1. Brunton LK, Bartlett DJ. Validity and Reliability of 2 Abbreviated Versions of the Gross Motor Function Measure. Physical Therapy. 2011;91(4):577–588. doi:10.2522/ptj.20100279
    1. Harvey AR. The Gross Motor Function Measure (GMFM). Journal of Physiotherapy. 2017;63(3):187. doi:10.1016/j.jphys.2017.05.007
    1. Drouin LM, Malouin F, Richards CL, Marcoux S. Correlation between the gross motor function measure scores and gait spatiotemporal measures in children with neurological impairments. Dev Med Child Neurol. 1996;38(11):1007–1019. doi:10.1111/j.1469-8749.1996.tb15061.x
    1. Dumas HM, Fragala-Pinkham MA, Haley SM, et al. Computer adaptive test performance in children with and without disabilities: prospective field study of the PEDI-CAT. Disabil Rehabil. 2012;34(5):393–401. doi:10.3109/09638288.2011.607217
    1. Dumas HM, Fragala-Pinkham MA. Concurrent validity and reliability of the pediatric evaluation of disability inventory-computer adaptive test mobility domain. Pediatr Phys Ther. 2012;24(2):171–176; discussion 176. doi:10.1097/PEP.0b013e31824c94ca
    1. Shore BJ, Allar BG, Miller PE, Matheney TH, Snyder BD, Fragala-Pinkham M. Measuring the Reliability and Construct Validity of the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT) in Children With Cerebral Palsy. Arch Phys Med Rehabil. 2019;100(1):45–51. doi:10.1016/j.apmr.2018.07.427
    1. Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ. Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther. 2000;80(9):873–885.
    1. Hielkema T, Hamer EG, Ebbers-Dekkers I, et al. GMFM in infancy: age-specific limitations and adaptations. Pediatr Phys Ther. 2013;25(2):168–176; discussion 177. doi:10.1097/PEP.0b013e318288d370
    1. Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol. 2008;50(10):744–750. doi:10.1111/j.1469-8749.2008.03089.x
    1. Delacy MJ, Reid SM, Australian Cerebral Palsy Register Group. Profile of associated impairments at age 5 years in Australia by cerebral palsy subtype and Gross Motor Function Classification System level for birth years 1996 to 2005. Dev Med Child Neurol. 2016;58 Suppl 2:50–56. doi:10.1111/dmcn.13012
    1. Gorter JW, Rosenbaum PL, Hanna SE, et al. Limb distribution, motor impairment, and functional classification of cerebral palsy. Dev Med Child Neurol. 2004;46(7):461–467. doi:10.1017/s0012162204000763
    1. Shevell MI, Dagenais L, Hall N, REPACQ Consortium. Comorbidities in cerebral palsy and their relationship to neurologic subtype and GMFCS level. Neurology. 2009;72(24):2090–2096. doi:10.1212/WNL.0b013e3181aa537b
    1. Palisano RJ, Cameron D, Rosenbaum PL, Walter SD, Russell D. Stability of the gross motor function classification system. Dev Med Child Neurol. 2006;48(6):424–428. doi:10.1017/S0012162206000934
    1. Palisano RJ, Avery L, Gorter JW, Galuppi B, McCoy SW. Stability of the Gross Motor Function Classification System, Manual Ability Classification System, and Communication Function Classification System. Developmental Medicine & Child Neurology. 2018;60(10):1026–1032. doi:10.1111/dmcn.13903
    1. Morris C, Galuppi BE, Rosenbaum PL. Reliability of family report for the Gross Motor Function Classification System. Dev Med Child Neurol. 2004;46(7):455–460.
    1. Mutlu A, Kara ÖK, Livanelioğlu A, et al. Agreement between parents and clinicians on the communication function levels and relationship of classification systems of children with cerebral palsy. Disabil Health J. 2018;11(2):281–286. doi:10.1016/j.dhjo.2017.11.001
    1. Jewell AT, Stokes AI, Bartlett DJ. Correspondence of classifications between parents of children with cerebral palsy aged 2 to 6 years and therapists using the Gross Motor Function Classification System. Dev Med Child Neurol. 2011;53(4):334–337. doi:10.1111/j.1469-8749.2010.03853.x
    1. Lee AC. COVID-19 and the Advancement of Digital Physical Therapist Practice and Telehealth. Phys Ther. 2020;100(7):1054–1057. doi:10.1093/ptj/pzaa079

Source: PubMed

3
購読する