Body Composition Findings by Computed Tomography in SARS-CoV-2 Patients: Increased Risk of Muscle Wasting in Obesity

Paola Gualtieri, Carmela Falcone, Lorenzo Romano, Sebastiano Macheda, Pierpaolo Correale, Pietro Arciello, Nicola Polimeni, Antonino De Lorenzo, Paola Gualtieri, Carmela Falcone, Lorenzo Romano, Sebastiano Macheda, Pierpaolo Correale, Pietro Arciello, Nicola Polimeni, Antonino De Lorenzo

Abstract

Obesity is a characteristic of COVID-19 patients and the risk of malnutrition can be underestimated due to excess of fat: a paradoxical danger. Long ICU hospitalization exposes patients to a high risk of wasting and loss of lean body mass. The complex management precludes the detection of anthropometric parameters for the definition and monitoring of the nutritional status. The use of imaging diagnostics for body composition could help to recognize and treat patients at increased risk of wasting with targeted pathways. COVID-19 patients admitted to the ICU underwent computed tomography within 24 hours and about 20 days later, to evaluate the parameters of the body and liver composition. The main results were the loss of the lean mass index and a greater increase in liver attenuation in obese subjects. These could be co-caused by COVID-19, prolonged bed rest, the complex medical nutritional therapy, and the starting condition of low-grade inflammation of the obese. The assessment of nutritional status, with body composition applied to imaging diagnostics and metabolic profiles in COVID-19, will assist in prescribing appropriate medical nutritional therapy. This will reduce recovery times and complications caused by frailty.

Keywords: CT scan; body composition; diagnostic imaging; fat; inflammation; lean; liver attenuation; muscle wasting; obesity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) Liver attenuation between lean and obese groups at baseline; between baseline and follow up, comparisons for (b) suprailiac thickness, (c) liver attenuation, (d) liver/spleen attenuation ratio, and (e) spinae erector muscle cross sectional area are shown. Values are presented as mean ± standard deviation. The statistical significance attributed to results with * p < 0.05, ** p < 0.005, and *** p < 0.001.
Figure 2
Figure 2
(Right) representation of metabolic pathways in response to critical condition. (Left) difference to CT images of liver attenuation between baseline and follow-up. FFA: Free Fatty Acids; GLUT: Glucose Transporter; IL: Interleukin; NK: Natural Killer; ROS: Reactive Oxygen Species; TGF: Transforming Growth Factor; TNF: Tumor necrosis factor.

References

    1. Feeding America. [(accessed on 25 April 2020)]; Available online: .
    1. Handu D., Moloney L., Rozga M., Cheng F. Malnutrition Care during the COVID-19 Pandemic: Considerations for Registered Dietitian Nutritionists Evidence Analysis Center. J. Acad. Nutr. Diet. 2020 doi: 10.1016/j.jand.2020.05.012.
    1. Kiekens C., Boldrini P., Andreoli A., Avesani R., Gamna F., Grandi M., Lombardi F., Lusuardi M., Molteni F., Perboni A., et al. Rehabilitation and respiratory management in the acute and early post-acute phase. Instant paper from the field” on rehabilitation answers to the Covid-19 emergency. Eur. J. Phys. Rehabil. Med. 2020 doi: 10.23736/S1973-9087.20.06305-4.
    1. Tobert C.M., Mott S.L., Nepple K.G. Malnutrition Diagnosis during Adult Inpatient Hospitalizations: Analysis of a Multi-Institutional Collaborative Database of Academic Medical Centers. J. Acad. Nutr. Diet. 2018;118:125–131. doi: 10.1016/j.jand.2016.12.019.
    1. Zheng K.I., Gao F., Wang X.B., Sun Q.F., Pan K.H., Wang T.Y., Ma H.L., Chen Y.P., Liu W.Y., George J., et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020;108:154244. doi: 10.1016/j.metabol.2020.154244.
    1. Sharma K., Mogensen K.M., Robinson M.K. Under-Recognizing Malnutrition in Hospitalized Obese Populations: The Real Paradox. Curr. Nutr. Rep. 2019;8:317–322. doi: 10.1007/s13668-019-00288-y.
    1. Romano L., Marchetti M., Gualtieri P., Di Renzo L., Belcastro M., De Santis G.L., Perrone M.A., De Lorenzo A. Effects of a Personalized VLCKD on Body Composition and Resting Energy Expenditure in the Reversal of Diabetes to Prevent Complications. Nutrients. 2019;11:1526. doi: 10.3390/nu11071526.
    1. Krukowski R.A., Ross K.M. Measuring weight with e-scales in clinical and research settings during the COVID-19 pandemic. Obesity. 2020 doi: 10.1002/oby.22851.
    1. Singer P., Blaser A.R., Berger M.M., Alhazzani W., Calder P.C., Casaer M.P., Hiesmayr M., Mayer K., Montejo J.C., Pichard C., et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019;38:48–79. doi: 10.1016/j.clnu.2018.08.037.
    1. Salehi S., Abedi A., Balakrishnan S., Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. AJR Am. J. Roentgenol. 2020:1–7. doi: 10.2214/AJR.20.23672.
    1. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020;80:607–613. doi: 10.1016/j.jinf.2020.03.037.
    1. Orphanidou C., McCargar L., Birmingham C.L., Mathieson J., Goldner E. Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography. J. Am. Diet. Assoc. 1994;94:855–858. doi: 10.1016/0002-8223(94)92363-9.
    1. Tanimura K., Sato S., Fuseya Y., Hasegawa K., Uemasu K., Sato A., Oguma T., Hirai T., Mishima M., Muro S. Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography-derived Index for Prognosis. Ann. Am. Thorac. Soc. 2016;13:334–341. doi: 10.1513/AnnalsATS.201507-446OC.
    1. Kissler S.M., Tedijanto C., Goldstein E., Grad Y.H., Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020:eabb5793. doi: 10.1126/science.abb5793.
    1. Epicentro, L’epidemiologia per la Sanità Pubblica Istituto Superiore di Sanità. [(accessed on 17 May 2020)]; Available online: .
    1. Epicentro, L’epidemiologia per la Sanità Pubblica Istituto Superiore di Sanità. [(accessed on 17 May 2020)]; Available online: .
    1. De Lorenzo A., Gratteri S., Gualtieri P., Cammarano A., Bertucci P., Di Renzo L. Why primary obesity is a disease? J. Transl. Med. 2019;17:169. doi: 10.1186/s12967-019-1919-y.
    1. Wells M.M., Li Z., Addeman B., McKenzie C.A., Mujoomdar A., Beaton M., Bird J. Computed Tomography Measurement of Hepatic Steatosis: Prevalence of Hepatic Steatosis in a Canadian Population. Can. J. Gastroenterol. Hepatol. 2016;2016:4930987. doi: 10.1155/2016/4930987.
    1. Rocha R., Cotrim H.P., Carvalho F.M., Siqueira A.C., Braga H., Freitas L.A. Body mass index and waist circumference in non-alcoholic fatty liver disease. J. Hum. Nutr. Diet. 2005;18:365–370. doi: 10.1111/j.1365-277X.2005.00634.x.
    1. Kyle U.G., Genton L., Hans D., Karsegard L., Slosman D.O., Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur. J. Clin. Nutr. 2001;55:663–672. doi: 10.1038/sj.ejcn.1601198.
    1. Epstein D., Andrawis W., Lipsky A.M., Ziad H.A., Matan M. Anxiety and Suicidality in a Hospitalized Patient with COVID-19 Infection. Eur. J. Case Rep. Intern. Med. 2020;7:001651. doi: 10.12890/2020_001651.
    1. Aubertin-Leheudre M., Rolland Y. The importance of physical activity to care for frail older adults during the covid-19 pandemic. J. Am. Med. Dir. Assoc. 2020 doi: 10.1016/j.jamda.2020.04.022.
    1. Narici M., De Vito G., Franchi M., Paoli A., Moro T., Marcolin G., Grassi B., Baldassarre G., Zuccarelli L., Biolo G., et al. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur. J. Sport Sci. 2020;12:1–22. doi: 10.1080/17461391.2020.1761076.
    1. Romano L., Bilotta F., Dauri M., Macheda S., Pujia A., De Santis G.L., Tarsitano M.G., Merra G., Di Renzo L., Esposito E., et al. Short Report—Medical nutrition therapy for critically ill patients with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2020;24:4035–4039. doi: 10.26355/eurrev_202004_20874.
    1. Tappy L., Schwarz J.M., Schneiter P., Cayeux C., Revelly J.P., Fagerquist C.K., Jéquier E., Chioléro R. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit. Care Med. 1998;26:860–867. doi: 10.1097/00003246-199805000-00018.
    1. De Lorenzo A., Soldati L., Sarlo F., Calvani M., Di Lorenzo N., Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World J. Gastroenterol. 2016;22:681–703. doi: 10.3748/wjg.v22.i2.681.
    1. De Lorenzo A., Romano L., Di Renzo L., Di Lorenzo N., Cenname G., Gualtieri P. Obesity: A preventable, treatable, but relapsing disease. Nutrition. 2020;71:110615. doi: 10.1016/j.nut.2019.110615.
    1. Preiser J.C., Ichai C., Orban J.C., Groeneveld A.B. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014;113:945–954. doi: 10.1093/bja/aeu187.
    1. Claycombe K., King L.E., Fraker P.J. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl. Acad. Sci. USA. 2008;105:2017–2021. doi: 10.1073/pnas.0712053105.
    1. Stofkova A. Leptin and adiponectin: From energy and metabolic dysbalance to inflammation and autoimmunity. Endocr. Regul. 2009;43:157–168.
    1. Gardner E.M., Beli E., Clinthorne J.F., Duriancik D.M. Energy intake and response to infection with influenza. Annu. Rev. Nutr. 2011;31:353–367. doi: 10.1146/annurev-nutr-081810-160812.
    1. Biolo G., Grimble G., Preiser J.C., Leverve X., Jolliet P., Planas M., Roth E., Wernerman J., Pichard C., European Society of Intensive Care Medicine Working Group on Nutrition and Metabolism Position paper of the ESICM Working Group on Nutrition and Metabolism. Metabolic basis of nutrition in intensive care unit patients: Ten critical questions. Intensive Care Med. 2002;28:1512–1520. doi: 10.1007/s00134-002-1512-2.
    1. Dungan K.M., Braithwaite S.S., Preiser J.C. Stress hyperglycaemia. Lancet. 2009;373:1798–1807. doi: 10.1016/S0140-6736(09)60553-5.
    1. Lecker S.H. Ubiquitin-protein ligases in muscle wasting: Multiple parallel pathways? Curr. Opin. Clin. Nutr. Metab. Care. 2003;6:271–275. doi: 10.1097/01.mco.0000068963.34812.e5.
    1. Bodine S.C., Latres E., Baumhueter S., Lai V.K., Nunez L., Clarke B.A., Poueymirou W.T., Panaro F.J., Na E., Dharmarajan K., et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–1708. doi: 10.1126/science.1065874.
    1. Li Y.P., Reid M.B. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;279:R1165–R1170. doi: 10.1152/ajpregu.2000.279.4.R1165.
    1. Scimeca M., Piccirilli E., Mastrangeli F., Rao C., Feola M., Orlandi A., Gasbarra E., Bonanno E., Tarantino U. Bone Morphogenetic Proteins and myostatin pathways: Key mediator of human sarcopenia. J. Transl. Med. 2017;15:34. doi: 10.1186/s12967-017-1143-6.
    1. Bloch S., Polkey M.I., Griffiths M., Kemp P. Molecular mechanisms of intensive care unit-acquired weakness. Eur. Respir. J. 2012;39:1000–1011. doi: 10.1183/09031936.00090011.
    1. Friedrich O. Critical illness myopathy: What is happening? Curr. Opin. Clin. Nutr. Metab. Care. 2006;9:403–409. doi: 10.1097/01.mco.0000232900.59168.a0.
    1. Fredriksson K., Tjäder I., Keller P., Petrovic N., Ahlman B., Schéele C., Wernerman J., Timmons J.A., Rooyackers O. Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS ONE. 2008;3:e3686. doi: 10.1371/annotation/68d951f9-a236-472f-98af-24e4cc4c1a20.
    1. Liaw K.Y., Wei T.C., Hsu S.C., Lin J.K. Effect of severe injury and critical illness on high-energy phosphates in human liver and muscle. J. Trauma. 1985;25:628–633. doi: 10.1097/00005373-198507000-00009.
    1. Brealey D., Singer M. Hyperglycemia in critical illness: A review. J. Diabetes Sci. Technol. 2009;3:1250–1260. doi: 10.1177/193229680900300604.
    1. Leander P., Sjöberg S., Höglund P. CT and MR imaging of the liver. Clinical importance of nutritional status. Acta Radiol. 2000;41:151–155. doi: 10.1080/028418500127345172.
    1. Hruschka D.J., Hadley C. How much do universal anthropometric standards bias the global monitoring of obesity and undernutrition? Obes. Rev. 2016;17:1030–1039. doi: 10.1111/obr.12449.
    1. Avolio E., Gualtieri P., Romano L., Pecorella C., Ferraro S., Palma G., Di Renzo L., De Lorenzo A. Obesity and Body Composition in Man and Woman: Associated Diseases and the New Role of Gut Microbiota. Curr. Med. Chem. 2020;27:216–229. doi: 10.2174/0929867326666190326113607.
    1. De Lorenzo A., Siclari M., Gratteri S., Romano L., Gualtieri P., Marchetti M., Merra G., Colica C. Developing and cross-validation of new equations to estimate fat mass in Italian population. Eur. Rev. Med. Pharmacol. Sci. 2019;23:2513–2524. doi: 10.26355/eurrev_201903_17399.
    1. Siri W.E. Body composition from fluid spaces and density: Analysis of methods. 1961. Nutrition. 1993;9:480–492.
    1. Durnin J.V., Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974;32:77–97. doi: 10.1079/BJN19740060.
    1. Faul F., Erdfelder E., Lang A.G., Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.

Source: PubMed

3
購読する