Health Benefits of Indoor Cycling: A Systematic Review

Manuel Chavarrias, Jorge Carlos-Vivas, Daniel Collado-Mateo, Jorge Pérez-Gómez, Manuel Chavarrias, Jorge Carlos-Vivas, Daniel Collado-Mateo, Jorge Pérez-Gómez

Abstract

Background and Objectives: Indoor cycling is one of the most practiced activities in fitness centers for most people regardless of their physical conditioning level. Several studies have analyzed the effect of indoor cycling on several parameters related to health, such as maximal oxygen consumption, blood pressure, body composition, as well as biochemical markers such as HDL or LDL. However, no study has synthesized all health benefits associated with the indoor cycling practice in the form of a systematic review and established guidelines or recommendations. Therefore, the aim of this manuscript was to conduct a systematic review of published studies about the benefits of indoor cycling training and to establish recommendations for coaches, researchers, and practitioners. Materials and Methods: The PRISMA guidelines were followed to conduct the current systematic review. A systematic search was performed to retrieve relevant published articles until January 2019 using the following keywords: 'indoor cycling', 'indoor bicycle', and 'spinning exercise'. Information about participants, intervention, comparisons, outcomes, and study design (PICOS) was extracted. Results: A total of 300 studies were initially identified. After the revision process, 13 of them were included. The total sample size of the studies was 372 (306 women). Results revealed that indoor cycling may improve aerobic capacity, blood pressure, lipid profile, and body composition. These enhancements may be achieved as standalone intervention or combined with other physical exercises or diet. Conclusions: The combination of indoor cycling and diet is recommended to improve the lipid profile, lose weight, and reduce blood pressure. Furthermore, indoor cycling alone may also enhance aerobic capacity. Given the lack of randomized controlled trials, these conclusions should be taken with caution.

Keywords: aerobic capacity; blood pressure; body mass index; indoor bicycle; spinning exercise.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram for selection of studies according to PRISMA guidelines.

References

    1. Elliott D., Carr S., Savage D. Effects of motivational music on work output and affective. J. Sport Behav. 2004;27:134–147.
    1. Pedersen B.K., Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports. 2006;16(Suppl. 1):3–63. doi: 10.1111/j.1600-0838.2006.00520.x.
    1. Caria M.A., Tangianu F., Concu A., Crisafulli A., Mameli O. Quantification of Spinning bike performance during a standard 50-min class. J. Sports Sci. 2007;25:421–429. doi: 10.1080/02640410600718533.
    1. Battista R.A., Foster C., Andrew J., Wright G., Lucia A., Porcari J.P. Physiologic responses during indoor cycling. J. Strength Cond. Res. 2008;22:1236–1241. doi: 10.1519/JSC.0b013e318173dbc4.
    1. Srinivasan J., Balasubramanian V. Effect of LBP on muscle activity of lower back and upper extremity while aerobic cycling-an sEMG based study. Intl. Conf. Biomed. Pharm. Eng. 2006;1:414–415.
    1. Bianco A., Bellafiore M., Battaglia G., Paoli A., Caramazza G., Farina F., Palma A. The effects of indoor cycling training in sedentary overweight women. J. Sports Med. Phys Fit. 2010;50:159–165.
    1. de Melo Dos Santos R., Costa F.C.E., Saraiva T.S., Callegari B. Muscle fatigue in participants of indoor cycling. Muscles Ligaments Tendons J. 2017;7:173–179. doi: 10.11138/mltj/2017.7.1.173.
    1. Hedman K., Bjarnegard N., Lanne T. Left Ventricular Adaptation to 12 Weeks of Indoor Cycling at the Gym in Untrained Females. Int. J. Sports Med. 2017;38:653–658. doi: 10.1055/s-0043-112341.
    1. Stoggl T., Schwarzl C., Muller E.E., Nagasaki M., Stoggl J., Scheiber P., Schonfelder M., Niebauer J. A Comparison between Alpine Skiing, Cross-Country Skiing and Indoor Cycling on Cardiorespiratory and Metabolic Response. J. Sports Sci. Med. 2016;15:184–195.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009;6:e1000100. doi: 10.1371/journal.pmed.1000100.
    1. Yoon J.G., Kim S.H., Rhyu H.S. Effects of 16-week spinning and bicycle exercise on body composition, physical fitness and blood variables of middle school students. J. Exerc. Rehabil. 2017;13:400–404. doi: 10.12965/jer.1735052.526.
    1. Sykes K., Choo L.L., Cotterrell M. Accumulating aerobic exercise for effective weight control. J. R. Soc. Promot. Health. 2004;124:24–28. doi: 10.1177/146642400312400109.
    1. Verrusio W., Andreozzi P., Renzi A., Martinez A., Longo G., Musumeci M., Cacciafesta M. Efficacy and safety of spinning exercise in middle-aged and older adults with metabolic syndrome: Randomized control trial. Ann. Ist. Super. Sanita. 2016;52:295–300. doi: 10.4415/ANN_16_02_24.
    1. Tsai S.W., Chan Y.C., Liang F., Hsu C.Y., Lee I.T. Brain-derived neurotrophic factor correlated with muscle strength in subjects undergoing stationary bicycle exercise training. J. Diabetes Complicat. 2015;29:367–371. doi: 10.1016/j.jdiacomp.2015.01.014.
    1. Mensberg P., Nyby S., Jorgensen P.G., Storgaard H., Jensen M.T., Sivertsen J., Holst J.J., Kiens B., Richter E.A., Knop F.K., et al. Near-normalization of glycaemic control with glucagon-like peptide-1 receptor agonist treatment combined with exercise in patients with type 2 diabetes. Diabetes Obes. Metab. 2017;19:172–180. doi: 10.1111/dom.12797.
    1. Petersen B.A., Hastings B., Gottschall J.S. Low load, high repetition resistance training program increases bone mineral density in untrained adults. J. Sports Med. Phys. Fit. 2017;57:70–76. doi: 10.23736/S0022-4707.16.05697-8.
    1. Balshem H., Helfand M., Schunemann H.J., Oxman A.D., Kunz R., Brozek J., Vist G.E., Falck-Ytter Y., Meerpohl J., Norris S., et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011;64:401–406. doi: 10.1016/j.jclinepi.2010.07.015.
    1. Guyatt G.H., Oxman A.D., Vist G.E., Kunz R., Falck-Ytter Y., Alonso-Coello P., Schunemann H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clin. Res. Ed.) 2008;336:924–926. doi: 10.1136/.
    1. Du P., Wu X., Xu J., Dong F., Liu X., Zhang Y., Zheng Y. Clomazone influence soil microbial community and soil nitrogen cycling. Sci. Total Environ. 2018;644:475–485. doi: 10.1016/j.scitotenv.2018.06.214.
    1. Kwon J., Cho E.M., Nandhakumar P., Yang S.I., Yang H. Rapid and Sensitive Detection of Aspergillus niger Using a Single-Mediator System Combined with Redox Cycling. Anal. Chem. 2018;90:13491–13497. doi: 10.1021/acs.analchem.8b03417.
    1. Velthuis M., Kosten S., Aben R., Kazanjian G., Hilt S., Peeters E., van Donk E., Bakker E.S. Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial. Glob. Chang. Biol. 2018;24:5231–5242. doi: 10.1111/gcb.14387.
    1. Encarnacion-Martinez A., Ferrer-Roca V., Garcia-Lopez J. Influence of Sex on Current Methods of Adjusting Saddle Height in Indoor Cycling. J. Strength Cond. Res. 2018 doi: 10.1519/JSC.0000000000002689.
    1. Holgado D., Zandonai T., Zabala M., Hopker J., Perakakis P., Luque-Casado A., Ciria L., Guerra-Hernandez E., Sanabria D. Tramadol effects on physical performance and sustained attention during a 20-min indoor cycling time-trial: A randomised controlled trial. J. Sci. Med. Sport. 2018;21:654–660. doi: 10.1016/j.jsams.2017.10.032.
    1. Schmit C., Duffield R., Hausswirth C., Brisswalter J., Le Meur Y. Optimizing Heat Acclimation for Endurance Athletes: High- Versus Low-Intensity Training. Int. J. Sports Physiol. Perform. 2018;13:816–823. doi: 10.1123/ijspp.2017-0007.
    1. Barbado C., Vicente-Campos D., Lopez-Chicharro J. Effects of age, sex, sweat rate and environmental conditions on heart rate and perceived exertion in indoor cycling. J. Sports Med. Phys. Fit. 2018;58:825–830. doi: 10.23736/S0022-4707.17.07203-6.
    1. Luszczyk M., Flis D.J., Szadejko I., Laskowski R., Ziolkowski W. Excess postexercise oxygen consumption and fat oxidation in recreationally trained men following exercise of equal energy expenditure: Comparisons of spinning and constant endurance exercise. J. Sports Med. Phys. Fit. 2018;58:1781–1789. doi: 10.23736/S0022-4707.17.08015-X.
    1. Rendos N.K., Musto A.A., Signorile J.F. Interactive effects of body position and perceived exertion during spinning exercises. J. Strength Cond. Res. 2015;29:692–699. doi: 10.1519/JSC.0000000000000699.
    1. Brogan M., Ledesma R., Coffino A., Chander P. Freebie Rhabdomyolysis: A Public Health Concern. Spin Class-Induced Rhabdomyolysis. Am. J. Med. 2017;130:484–487. doi: 10.1016/j.amjmed.2016.11.004.
    1. Butler D.P., Henry F.P., Ghali S. The perils of spinning class: An open ankle fracture following a spinning exercise session. J. Plast. Reconstr. Aesthetic Surg. 2013;66:1801–1802. doi: 10.1016/j.bjps.2013.05.036.
    1. Gould D.J., Badash I., Han S., Wong A.K. Spinning Out of Control: A 19-Year-Old Female with Spinning-Related Exertional Thigh Compartment Syndrome. Cureus. 2016;8:e939. doi: 10.7759/cureus.939.
    1. Nair U.S., Jordan J.S., Funk D., Gavin K., Tibbetts E., Collins B.N. Integrating health education and physical activity programming for cardiovascular health promotion among female inmates: A proof of concept study. Contemp. Clin. Trials. 2016;48:65–69. doi: 10.1016/j.cct.2016.03.007.
    1. Shafer N. Indoor cycling for the cardiac patient. JAMA. 1971;215:1985. doi: 10.1001/jama.1971.03180250077025.
    1. Bardal E.M., Roeleveld K., Mork P.J. Aerobic and cardiovascular autonomic adaptations to moderate intensity endurance exercise in patients with fibromyalgia. J. Rehabil. Med. 2015;47:639–646. doi: 10.2340/16501977-1966.
    1. Lundberg Slingsby M.H., Nyberg M., Egelund J., Mandrup C.M., Frikke-Schmidt R., Kirkby N.S., Hellsten Y. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women. J. Thromb. Haemost. 2017;15:2419–2431. doi: 10.1111/jth.13866.
    1. Knudsen L.B., Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019;10:155. doi: 10.3389/fendo.2019.00155.
    1. Valle V.S., Mello D.B., Fortes Mde S., Dantas E.H., Mattos M.A. Effect of diet and indoor cycling on body composition and serum lipid. Arq. Bras. Cardiol. 2010;95:173–178. doi: 10.1590/S0066-782X2010005000080.
    1. Kyrolainen H., Hackney A.C., Salminen R., Repola J., Hakkinen K., Haimi J. Effects of Combined Strength and Endurance Training on Physical Performance and Biomarkers of Healthy Young Women. J. Strength Cond Res. 2018;32:1554–1561. doi: 10.1519/JSC.0000000000002034.
    1. Varkey E., Cider A., Carlsson J., Linde M. A study to evaluate the feasibility of an aerobic exercise program in patients with migraine. Headache. 2009;49:563–570. doi: 10.1111/j.1526-4610.2008.01231.x.
    1. Busch A.J., Webber S.C., Brachaniec M., Bidonde J., Bello-Haas V.D., Danyliw A.D., Overend T.J., Richards R.S., Sawant A., Schachter C.L. Exercise therapy for fibromyalgia. Curr. Pain Headache Rep. 2011;15:358–367. doi: 10.1007/s11916-011-0214-2.
    1. Haskell W.L., Lee I.M., Pate R.R., Powell K.E., Blair S.N., Franklin B.A., Macera C.A., Heath G.W., Thompson P.D., Bauman A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007;39:1423–1434. doi: 10.1249/mss.0b013e3180616b27.
    1. Russell D., Gallardo I.Á., Wilson I., Hughes C., Davison G., Sañudo B., McVeigh J. ‘Exercise to me is a scary word’: perceptions of fatigue, sleep dysfunction, and exercise in people with fibromyalgia syndrome-a focus group study. Rheumatol. Int. 2018;38:507–515. doi: 10.1007/s00296-018-3932-5.
    1. Kang J., Chaloupka E.C., Mastrangelo M.A., Hoffman J.R., Ratamess N.A., O’Connor E. Metabolic and perceptual responses during Spinning cycle exercise. Med. Sci. Sports Exerc. 2005;37:853–859. doi: 10.1249/01.MSS.0000161826.28186.76.
    1. Sedlock D.A., Fissinger J.A., Melby C.L. Effect of exercise intensity and duration on postexercise energy expenditure. Med. Sci. Sports Exerc. 1989;21:662–666. doi: 10.1249/00005768-198912000-00006.
    1. Greer B.K., Sirithienthad P., Moffatt R.J., Marcello R.T., Panton L.B. EPOC Comparison Between Isocaloric Bouts of Steady-State Aerobic, Intermittent Aerobic, and Resistance Training. Res. Q. Exerc. Sport. 2015;86:190–195. doi: 10.1080/02701367.2014.999190.
    1. Abboud G.J., Greer B.K., Campbell S.C., Panton L.B. Effects of load-volume on EPOC after acute bouts of resistance training in resistance-trained men. J. Strength Cond. Res. 2013;27:1936–1941. doi: 10.1519/JSC.0b013e3182772eed.
    1. Metkus T.S., Jr., Baughman K.L., Thompson P.D. Exercise prescription and primary prevention of cardiovascular disease. Circulation. 2010;121:2601–2604. doi: 10.1161/CIRCULATIONAHA.109.903377.
    1. Pescatello L.S., Guidry M.A., Blanchard B.E., Kerr A., Taylor A.L., Johnson A.N., Maresh C.M., Rodriguez N., Thompson P.D. Exercise intensity alters postexercise hypotension. J. Hypertens. 2004;22:1881–1888. doi: 10.1097/00004872-200410000-00009.
    1. Leibowitz A., Klin Y., Gruenbaum B.F., Gruenbaum S.E., Kuts R., Dubilet M., Ohayon S., Boyko M., Sheiner E., Shapira Y., et al. Effects of strong physical exercise on blood glutamate and its metabolite 2-ketoglutarate levels in healthy volunteers. Acta Neurobiol. Exp. (Wars) 2012;72:385–396.
    1. Vazzana N., Santilli F., Sestili S., Cuccurullo C., Davi G. Determinants of increased cardiovascular disease in obesity and metabolic syndrome. Curr. Med. Chem. 2011;18:5267–5280. doi: 10.2174/092986711798184299.
    1. Gaesser G.A., Poole D.C. The slow component of oxygen uptake kinetics in humans. Exerc. Sport Sci. Rev. 1996;24:35–71. doi: 10.1249/00003677-199600240-00004.
    1. Barnes J.T., Elder C.L., Pujol T.J. Overweight and obese adults: Pathology and treatment. Strength Cond. J. 2004;26:10–76. doi: 10.1519/00126548-200406000-00018.
    1. Liu C.J., Latham N. Adverse events reported in progressive resistance strength training trials in older adults: 2 sides of a coin. Arch. Phys. Med. Rehabil. 2010;91:1471–1473. doi: 10.1016/j.apmr.2010.06.001.
    1. Leon A.S., Sanchez O.A. Response of blood lipids to exercise training alone or combined with dietary intervention. Med. Sci. Sports Exerc. 2001;33:S502–S515, discussion S528–S529. doi: 10.1097/00005768-200106001-00021.
    1. Wood R.J., Volek J.S., Liu Y., Shachter N.S., Contois J.H., Fernandez M.L. Carbohydrate restriction alters lipoprotein metabolism by modifying VLDL, LDL, and HDL subfraction distribution and size in overweight men. J. Nutr. 2006;136:384–389. doi: 10.1093/jn/136.2.384.
    1. Franklin B.A., Durstine J.L., Roberts C.K., Barnard R.J. Impact of diet and exercise on lipid management in the modern era. Best Pract. Res. Clin. Endocrinol. Metab. 2014;28:405–421. doi: 10.1016/j.beem.2014.01.005.
    1. Clifton P.M. Diet, exercise and weight loss and dyslipidaemia. Pathology. 2019;51:222–226. doi: 10.1016/j.pathol.2018.10.013.
    1. Christmass M.A., Dawson B., Passeretto P., Arthur P.G. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1999;80:423–435. doi: 10.1007/s004210050614.

Source: PubMed

3
購読する