Extracorporeal carbon dioxide removal for acute hypercapnic exacerbations of chronic obstructive pulmonary disease: study protocol for a randomised controlled trial

Nicholas A Barrett, Eirini Kostakou, Nicholas Hart, Abdel Douiri, Luigi Camporota, Nicholas A Barrett, Eirini Kostakou, Nicholas Hart, Abdel Douiri, Luigi Camporota

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a common cause of chronic respiratory failure and its course is punctuated by a series of acute exacerbations which commonly lead to hospital admission. Exacerbations are managed through the application of non-invasive ventilation and, when this fails, tracheal intubation and mechanical ventilation. The need for mechanical ventilation significantly increases the risk of death. An alternative therapy, extracorporeal carbon dioxide removal (ECCO2R), has been shown to be efficacious in removing carbon dioxide from the blood; however, its impact on respiratory physiology and patient outcomes has not been explored.

Methods/design: A randomised controlled open label trial of patients (12 in each arm) with acute exacerbations of COPD at risk of failing conventional therapy (NIV) randomised to either remaining on NIV or having ECCO2R added to NIV with a primary endpoint of time to cessation of NIV. The change in respiratory physiology following the application of ECCO2R and/or NIV will be measured using electrical impedance tomography, oesophageal pressure and parasternal electromyography. Additional outcomes, including patient tolerance, outcomes, need for readmission, changes in blood gases and biochemistry and procedural complications, will be measured. Physiological changes will be compared within one patient over time and between the two groups. Healthcare costs in the UK system will also be compared between the two groups.

Discussion: COPD is a common disease and exacerbations are a leading cause of hospital admission in the UK and worldwide, with a sizeable mortality. The management of patients with COPD consumes significant hospital and financial resources. This study seeks to understand the feasibility of a novel approach to the management of patients with acute exacerbations of COPD as well as to understand the underlying physiological changes to explain why the approach does or does not assist this patient cohort. Detailed respiratory physiology has not been previously undertaken using this technique and there are no other randomised controlled trials currently in the literature.

Trial registration: ClinicalTrials.gov, NCT02086084.

Keywords: Acute exacerbations of chronic obstructive pulmonary disease; COPD; ECCO2R; Extracorporeal CO2 removal; NIV; Non-invasive ventilation.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Example template of recommended content for the schedule of enrolment, interventions, and assessments (recommended content can be displayed using various schematic formats; see SPIRIT 2013 Explanation and Elaboration for examples from protocols) (Additional File 2). **List specific timepoints in this row

References

    1. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Spencer S, Calverley PM, Burge PS, Jones PW. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004;23(5):698–702. doi: 10.1183/09031936.04.00121404.
    1. Kessler R, Stahl E, Vogelmeier C, Haughney J, Trudeau E, Lofdahl CG, et al. Patient understanding, detection, and experience of COPD exacerbations: an observational, interview-based study. Chest. 2006;130(1):133–142. doi: 10.1378/chest.130.1.133.
    1. Garcia-Aymerich J, Farrero E, Felez MA, Izquierdo J, Marrades RM, Anto JM. Risk factors of readmission to hospital for a COPD exacerbation: a prospective study. Thorax. 2003;58(2):100–105. doi: 10.1136/thorax.58.2.100.
    1. Anzueto A. Impact of exacerbations on COPD. Eur Respir Rev. 2009;19(116):113–118. doi: 10.1183/09059180.00002610.
    1. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001;163(5):1256–1276. doi: 10.1164/ajrccm.163.5.2101039.
    1. Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57(10):847–852. doi: 10.1136/thorax.57.10.847.
    1. Seemungal T, Sykes A. Recent advances in exacerbations of COPD. Thorax. 2008;63(10):850–852. doi: 10.1136/thx.2008.099127.
    1. Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161(5):1608–1613. doi: 10.1164/ajrccm.161.5.9908022.
    1. Kanner RE, Anthonisen NR, Connett JE. Lower respiratory illnesses promote FEV (1) decline in current smokers but not ex-smokers with mild chronic obstructive pulmonary disease: results from the lung health study. Am J Respir Crit Care Med. 2001;164(3):358–364. doi: 10.1164/ajrccm.164.3.2010017.
    1. Kesten S, Celli B, Decramer M, Liu D, Tashkin D. Adverse health consequences in COPD patients with rapid decline in FEV1 - evidence from the UPLIFT trial. Respir Res. 2011;12:129. doi: 10.1186/1465-9921-12-129.
    1. Anzueto A, Leimer I, Kesten S. Impact of frequency of COPD exacerbations on pulmonary function, health status and clinical outcomes. Int J Chron Obstruct Pulmon Dis. 2009;4:245–251.
    1. Ankjaergaard KL, Rasmussen DB, Schwaner SH, Andreassen HF, Hansen EF, Wilcke JT. COPD: Mortality and readmissions in relation to number of admissions with noninvasive ventilation. Copd. 2017;14(1):30–36. doi: 10.1080/15412555.2016.1181160.
    1. Burge S, Wedzicha JA. COPD exacerbations: definitions and classifications. Eur Respir J Suppl. 2003;41:46s–53s. doi: 10.1183/09031936.03.00078002.
    1. Ram FS, Picot J, Lightowler J, Wedzicha JA. Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2004;(3):Cd004104. .
    1. Osadnik CR, Tee VS, Carson-Chahhoud KV, Picot J, Wedzicha JA, Smith BJ. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;7:Cd004104.
    1. Rochwerg Bram, Brochard Laurent, Elliott Mark W., Hess Dean, Hill Nicholas S., Nava Stefano, Navalesi Paolo, Antonelli Massimo, Brozek Jan, Conti Giorgio, Ferrer Miquel, Guntupalli Kalpalatha, Jaber Samir, Keenan Sean, Mancebo Jordi, Mehta Sangeeta, Raoof Suhail. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. European Respiratory Journal. 2017;50(2):1602426. doi: 10.1183/13993003.02426-2016.
    1. Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333(13):817–822. doi: 10.1056/NEJM199509283331301.
    1. Lightowler JV, Wedzicha JA, Elliott MW, Ram FS. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ. 2003;326(7382):185. doi: 10.1136/bmj.326.7382.185.
    1. Appendini L, Patessio A, Zanaboni S, Carone M, Gukov B, Donner C. Physiologic effects of positive endexpiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149(5):1069–1076. doi: 10.1164/ajrccm.149.5.8173743.
    1. Demoule A, Girou E, Richard JC, Taille S, Brochard L. Increased use of noninvasive ventilation in French intensive care units. Intensive Care Med. 2006;32(11):1747–1755. doi: 10.1007/s00134-006-0229-z.
    1. Abroug F, Ouanes-Besbes L, Hammouda Z, Benabidallah S, Dachraoui F, Ouanes I, et al. Noninvasive ventilation with helium-oxygen mixture in hypercapnic COPD exacerbation: aggregate meta-analysis of randomized controlled trials. Ann Intensive Care. 2017;7(1):59. doi: 10.1186/s13613-017-0273-6.
    1. Ozsancak Ugurlu A, Habesoglu MA. Epidemiology of NIV for acute respiratory failure in COPD patients: Results from the international surveys vs. the "real world". Copd. 2017;14(4):429–438. doi: 10.1080/15412555.2017.1336527.
    1. Contou D, Fragnoli C, Cordoba-Izquierdo A, Boissier F, Brun-Buisson C, Thille AW. Noninvasive ventilation for acute hypercapnic respiratory failure: intubation rate in an experienced unit. Respir Care. 2013;58(12):2045–2052. doi: 10.4187/respcare.02456.
    1. Carratu P, Bonfitto P, Dragonieri S, Schettini F, Clemente R, Di Gioia G, et al. Early and late failure of noninvasive ventilation in chronic obstructive pulmonary disease with acute exacerbation. Eur J Clin Investig. 2005;35(6):404–409. doi: 10.1111/j.1365-2362.2005.01509.x.
    1. Kumar S, Khilnani GC, Banga A, Sharma SK. Predictors of requirement of mechanical ventilation in patients with chronic obstructive pulmonary disease with acute respiratory failure. Lung India. 2013;30(3):178–182. doi: 10.4103/0970-2113.116238.
    1. Confalonieri M, Garuti G, Cattaruzza MS, Osborn JF, Antonelli M, Conti G, et al. A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur Respir J. 2005;25(2):348–355. doi: 10.1183/09031936.05.00085304.
    1. Chandra D, Stamm JA, Taylor B, Ramos RM, Satterwhite L, Krishnan JA, et al. Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998-2008. Am J Respir Crit Care Med. 2012;185(2):152–159. doi: 10.1164/rccm.201106-1094OC.
    1. Martin-Gonzalez F, Gonzalez-Robledo J, Sanchez-Hernandez F, Moreno-Garcia MN, Barreda-Mellado I. Effectiveness and predictors of failure of noninvasive mechanical ventilation in acute respiratory failure. Med Intensiva. 2016;40(1):9–17. doi: 10.1016/j.medin.2015.01.007.
    1. Barrett NA, Camporota L. The evolving role and practical application of extracorporeal carbon dioxide removal in critical care. Crit Care Resusc. 2017;19(Suppl 1):62–67.
    1. Camporota L, Barrett N. Current applications for the use of extracorporeal carbon dioxide removal in critically ill patients. Biomed Res Int. 2016;2016:9781695. doi: 10.1155/2016/9781695.
    1. Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, et al. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39(6):1382–1387. doi: 10.1097/CCM.0b013e31820eda45.
    1. Wearden PD, Federspiel WJ, Morley SW, Rosenberg M, Bieniek PD, Lund LW, et al. Respiratory dialysis with an active-mixing extracorporeal carbon dioxide removal system in a chronic sheep study. Intensive Care Med. 2012;38(10):1705–1711. doi: 10.1007/s00134-012-2651-8.
    1. Ruberto F, Pugliese F, D'Alio A, Perrella S, D'Auria B, Ianni S, et al. Extracorporeal removal CO2 using a venovenous, low-flow system (Decapsmart) in a lung transplanted patient: a case report. Transplant Proc. 2009;41(4):1412–1414. doi: 10.1016/j.transproceed.2009.03.048.
    1. Cardenas VJ, Jr, Lynch JE, Ates R, Miller L, Zwischenberger JB. Venovenous carbon dioxide removal in chronic obstructive pulmonary disease: experience in one patient. ASAIO J. 2009;55(4):420–422. doi: 10.1097/MAT.0b013e3181a7b55d.
    1. Dorrington KL, McRae KM, Gardaz JP, Dunnill MS, Sykes MK, Wilkinson AR. A randomized comparison of total extracorporeal CO2 removal with conventional mechanical ventilation in experimental hyaline membrane disease. Intensive Care Med. 1989;15(3):184–191. doi: 10.1007/BF01058571.
    1. Livigni S, Maio M, Ferretti E, Longobardo A, Potenza R, Rivalta L, et al. Efficacy and safety of a low-flow veno-venous carbon dioxide removal device: results of an experimental study in adult sheep. Crit Care. 2006;10(5):R151. doi: 10.1186/cc5082.
    1. Schmidt W, Herth F, Mani R, Burki N. Extracorporeal CO2 removal with the hemolung respiratory assist system: Preliminary results of a pilot study. DIVI2011. .
    1. Moss CE, Galtrey EJ, Camporota L, Meadows C, Gillon S, Ioannou N, et al. A retrospective observational case series of low-flow venovenous extracorporeal carbon dioxide removal use in patients with respiratory failure. ASAIO J. 2016;62(4):458–462. doi: 10.1097/MAT.0000000000000386.
    1. Garcia JP, Kon ZN, Evans C, Wu Z, Iacono AT, McCormick B, et al. Ambulatory veno-venous extracorporeal membrane oxygenation: innovation and pitfalls. J Thorac Cardiovasc Surg. 2011;142(4):755–761. doi: 10.1016/j.jtcvs.2011.07.029.
    1. Kluge S, Braune SA, Engel M, Nierhaus A, Frings D, Ebelt H, et al. Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med. 2012;38(10):1632–1639. doi: 10.1007/s00134-012-2649-2.
    1. Burki NK, Mani RK, Herth FJ, Schmidt W, Teschler H, Bonin F, et al. A novel extracorporeal CO2 removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest. 2013;143(3):678–686. doi: 10.1378/chest.12-0228.
    1. Braune S, Sieweke A, Brettner F, Staudinger T, Joannidis M, Verbrugge S, et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016;42(9):1437–1444. doi: 10.1007/s00134-016-4452-y.
    1. Abrams D, Brodie D. Emerging indications for extracorporeal membrane oxygenation in adults with respiratory failure. Ann Am Thorac Soc. 2013;10(4):371–377. doi: 10.1513/AnnalsATS.201305-113OT.
    1. Sklar MC, Beloncle F, Katsios CM, Brochard L, Friedrich JO. Extracorporeal carbon dioxide removal in patients with chronic obstructive pulmonary disease: a systematic review. Intensive Care Med. 2015;41(10):1752–1762. doi: 10.1007/s00134-015-3921-z.
    1. Pisani L, Fasano L, Corcione N, Comellini V, Guerrieri A, Ranieri MV, et al. Effects of extracorporeal CO2 removal on inspiratory effort and respiratory pattern in patients who fail weaning from mechanical ventilation. Am J Respir Crit Care Med. 2015;192(11):1392–1394. doi: 10.1164/rccm.201505-0930LE.
    1. NICE. Chronic obstructive pulmonary disease in over 16s: diagnosis and management: NICE; 2018. .
    1. Bayford R. Bioimpedance tomography (electrical impedance tomography) Annu Rev Biomed Eng. 2006;8:63–91. doi: 10.1146/annurev.bioeng.8.061505.095716.
    1. Brown BH. Electrical impedance tomography (EIT): a review. J Med Eng Technol. 2003;27(3):97–108. doi: 10.1080/0309190021000059687.
    1. Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Crit Care Med. 2009;37(2):713–724. doi: 10.1097/CCM.0b013e3181958d2f.
    1. Frerichs I, Amato MB, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2016. .
    1. Frerichs Iz, Becher T, Weiler N. Methodology of electrical impedance tomography-derived measures of regional lung ventilation. 2014:1. .
    1. Costa EL, Lima RG, Amato MB. Electrical impedance tomography. Curr Opin Crit Care. 2009;15(1):18–24. doi: 10.1097/MCC.0b013e3283220e8c.
    1. Moerer O, Hahn G, Quintel M. Lung impedance measurements to monitor alveolar ventilation. Curr Opin Crit Care. 2011;17(3):260–267. doi: 10.1097/MCC.0b013e3283463c9c.
    1. Muders T, Luepschen H, Putensen C. Impedance tomography as a new monitoring technique. Curr Opin Crit Care. 2010;16(3):269–275. doi: 10.1097/MCC.0b013e3283390cbf.
    1. Bikker IG, Preis C, Egal M, Bakker J, Gommers D. Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory lung pressure trial. Crit Care. 2011;15(4):R193. doi: 10.1186/cc10354.
    1. Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78(2):201–221.
    1. Brandolese R, Broseghini C, Polese G, Bernasconi M, Brandi G, Milic-Emili J, et al. Effects of intrinsic PEEP on pulmonary gas exchange in mechanically-ventilated patients. Eur Respir J. 1993;6(3):358–363.
    1. Balleza M, Calaf N, Feixas T, Gonzalez M, Anton D, Riu PJ, et al. Measuring breathing pattern in patients with chronic obstructive pulmonary disease by electrical impedance tomography. Archivos de bronconeumologia. 2009;45(7):320–324. doi: 10.1016/S1579-2129(09)72431-0.
    1. Trenk F, Mendes L, Carvalho P, Paiva RP, Henriques J, Maglaveras N, et al. Evaluation of lung ventilation distribution in chronic obstructive pulmonary disease patients using the global inhomogeneity index. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:5286–5289.
    1. Vogt B, Pulletz S, Elke G, Zhao Z, Zabel P, Weiler N, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiology (1985) 2012;113(7):1154–1161. doi: 10.1152/japplphysiol.01630.2011.
    1. Vogt B, Zhao Z, Zabel P, Weiler N, Frerichs I. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;311(1):L8–l19. doi: 10.1152/ajplung.00463.2015.
    1. Mauri T, Bellani G, Salerno D, Mantegazza F, Pesenti A. Regional distribution of air trapping in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(12):1466–1467. doi: 10.1164/rccm.201303-0463IM.
    1. Kostakou E, Barrett N, Camporota L. Electrical impedance tomography to determine optimal positive end-expiratory pressure in severe chronic obstructive pulmonary disease. Crit Care. 2016:1–2.
    1. Crabb M, Grychtol B, Lionheart W, Camporota L, editors. EIT regional time constants. 2016.
    1. R’oka P, Waldmann A, Ender F, Bohm S, Windisch W, Strassmann S, et al. Expiratory time constants by electrical impedance tomography in hypoxemic and hypercapnic acute lung failure - a feasibility study. Int Care Med Exp. 2015;3(Supp 1):495.
    1. Mauri T, Bellani G, Confalonieri A, Tagliabue P, Turella M, Coppadoro A, et al. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit Care Med. 2013;41(7):1664–1673. doi: 10.1097/CCM.0b013e318287f6e7.
    1. Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC. Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med. 2003;29(12):2312–2316. doi: 10.1007/s00134-003-2029-z.
    1. Pulletz S, Kott M, Elke G, dler DS, Vogt B, Weiler N, et al. Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome. 2012;7(1):1. .
    1. Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH. Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants. Intensive Care Med. 2012;38(2):294–299. doi: 10.1007/s00134-011-2410-2.
    1. Becher T, Kott M, Schadler D, Vogt B, Meinel T, Weiler N, et al. Influence of tidal volume on ventilation inhomogeneity assessed by electrical impedance tomography during controlled mechanical ventilation. Physiol Meas. 2015;36(6):1137–1146. doi: 10.1088/0967-3334/36/6/1137.
    1. Becher T, Vogt B, Kott M, Schadler D, Weiler N, Frerichs I. Functional regions of interest in electrical impedance tomography: A secondary analysis of two clinical studies. PLoS One. 2016;11(3):e0152267. doi: 10.1371/journal.pone.0152267.
    1. Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med. 2009;35(11):1900–1906. doi: 10.1007/s00134-009-1589-y.
    1. Zhao Z, Pulletz S, Frerichs I, Muller-Lisse U, Moller K. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome. BMC Res Notes. 2014;7:82. doi: 10.1186/1756-0500-7-82.
    1. Frerichs I, Achtzehn U, Pechmann A, Pulletz S, Schmidt EW, Quintel M, et al. High-frequency oscillatory ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease. J Crit Care. 2012;27(2):172–181. doi: 10.1016/j.jcrc.2011.04.008.
    1. Riedel T, Kyburz M, Latzin P, Thamrin C, Frey U. Regional and overall ventilation inhomogeneities in preterm and term-born infants. Intensive Care Med. 2009;35(1):144–151. doi: 10.1007/s00134-008-1299-x.
    1. Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der Groeben C, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med. 2008;36(3):903–909. doi: 10.1097/CCM.0B013E3181652EDD.
    1. Frerichs I, Zhao Z, Becher T, Zabel P, Weiler N, Vogt B. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas. 2016;37(6):698–712. doi: 10.1088/0967-3334/37/6/698.
    1. Jolley CJ, Luo YM, Steier J, Rafferty GF, Polkey MI, Moxham J. Neural respiratory drive and breathlessness in COPD. Eur Respir J. 2015;45(2):355–364. doi: 10.1183/09031936.00063014.
    1. Murphy PB, Kumar A, Reilly C, Jolley C, Walterspacher S, Fedele F, et al. Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax. 2011;66(7):602–608. doi: 10.1136/thx.2010.151332.
    1. Suh ES, Mandal S, Harding R, Ramsay M, Kamalanathan M, Henderson K, et al. Neural respiratory drive predicts clinical deterioration and safe discharge in exacerbations of COPD. Thorax. 2015;70(12):1123–1130. doi: 10.1136/thoraxjnl-2015-207188.
    1. Petit JM, Milic-Emili G, Delhez L. Role of the diaphragm in breathing in conscious normal man: an electromyographic study. J Appl Physiol. 1960;15:1101–1106. doi: 10.1152/jappl.1960.15.6.1101.
    1. Sinderby C, Spahija J, Beck J. Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163:1637–1641. doi: 10.1164/ajrccm.163.7.2007033.
    1. Jolley CJ, Moxham J. A physiological model of patient-reported breathlessness during daily activities in COPD. Eur Respir Rev. 2009;18(112):66–79. doi: 10.1183/09059180.00000809.
    1. Steier J, Jolley CJ, Polkey MI, Moxham J. Nocturnal asthma monitoring by chest wall electromyography. Thorax. 2011;66(7):609–614. doi: 10.1136/thx.2010.152462.
    1. Fukuda T, Echeimberg J, Pompeu J, Lucareli P, Garbelotti S, Gimenes R, et al. Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. J Appl Res. 2010;10(1):32–39.
    1. Fridlund AJ, Cacioppo JT. Guidelines for human electromyographic research. Psychophysiology. 1986;23(5):567–589. doi: 10.1111/j.1469-8986.1986.tb00676.x.
    1. Benditt JO. Esophageal and gastric pressure measurements. Respir Care. 2005;50(1):68–75.
    1. Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014;20(3):352–358. doi: 10.1097/MCC.0000000000000089.
    1. Hedenstierna G. Esophageal pressure: benefit and limitations. Minerva Anestesiol. 2012;78(8):959–966.
    1. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–531. doi: 10.1164/rccm.201312-2193CI.
    1. Brochard L. Measurement of esophageal pressure at bedside: pros and cons. Curr Opin Crit Care. 2014;20(1):39–46. doi: 10.1097/MCC.0000000000000050.
    1. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126(5):788–791.
    1. Cummins C, Bentley AH, McAuley DF, McNamee JJ, Patrick H, Barrett NA. A United Kingdom Register study of in-hospital outcomes of patients receiving extracorporeal carbon dioxide removal. J Intensive Care Soc. 2018;19(2):114–121. doi: 10.1177/1751143717739816.
    1. NICE . National Institute for Health and Care Excellence Interventional Procedure Guidance 428. London: Extracorporeal membrane carbon dioxide removal; 2012.

Source: PubMed

3
購読する