Genome-Wide Association Approach Identified Novel Genetic Predictors of Heart Rate Response to β-Blockers

Mohamed H Shahin, Daniela J Conrado, Daniel Gonzalez, Yan Gong, Maximilian T Lobmeyer, Amber L Beitelshees, Eric Boerwinkle, John G Gums, Arlene Chapman, Stephen T Turner, Rhonda M Cooper-DeHoff, Julie A Johnson, Mohamed H Shahin, Daniela J Conrado, Daniel Gonzalez, Yan Gong, Maximilian T Lobmeyer, Amber L Beitelshees, Eric Boerwinkle, John G Gums, Arlene Chapman, Stephen T Turner, Rhonda M Cooper-DeHoff, Julie A Johnson

Abstract

Background: For many indications, the negative chronotropic effect of β-blockers is important to their efficacy, yet the heart rate (HR) response to β-blockers varies. Herein, we sought to use a genome-wide association approach to identify novel single nucleotide polymorphisms (SNPs) associated with HR response to β-blockers.

Methods and results: We first performed 4 genome-wide association analyses for HR response to atenolol (a β1-adrenergic receptor blocker) as: (1) monotherapy or (2) add-on therapy, in 426 whites and 273 blacks separately from the PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) study. A meta-analysis was then performed between the genome-wide association analysis performed in PEAR atenolol monotherapy and add-on therapy, in each race separately, using the inverse variance method assuming fixed effects. From this analysis, SNPs associated with HR response to atenolol at a P<1E-05 were tested for replication in whites (n=200) and blacks (n=168) treated with metoprolol (a β1-adrenergic receptor blocker). From the genome-wide association meta-analyses, SNP rs17117817 near olfactory receptor family10 subfamily-p-member1 (OR10P1), and SNP rs2364349 in sorting nexin-9 (SNX9) replicated in blacks. The combined studies meta-analysis P values for the rs17117817 and rs2364349 reached genome-wide significance (rs17117817G-allele; Meta-β=5.53 beats per minute, Meta-P=2E-09 and rs2364349 A-allele; Meta-β=3.5 beats per minute, Meta-P=1E-08). Additionally, SNPs in the OR10P1 and SNX9 gene regions were also associated with HR response in whites.

Conclusions: This study highlights OR10P1 and SNX9 as novel genes associated with changes in HR in response to β-blockers.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00246519.

Keywords: atenolol; heart rate; metoprolol; pharmacogenomics; β‐blockers.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
PEAR study design. ATEN indicates atenolol; HCTZ, hydrochlorothiazide; HR, heart rate; PEAR, Pharmacogenomics Evaluation of Antihypertensive Response.
Figure 2
Figure 2
The overall analysis framework of the study. GWAS indicates genome‐wide association study; PEAR, Pharmacogenomics Evaluation of Antihypertensive Response; SNP, single nucleotide polymorphism.
Figure 3
Figure 3
Effect of rs17117817 and rs2364349 polymorphisms on the β‐blocker HR response in whites within PEAR and PEAR‐2 studies. A, rs17117817. B, rs2364349. The box represents the values from the 25% to 75% percentile. The horizontal line represents the median. The black diamond represents the mean. The vertical line extends from the minimum to the maximum value. Each blue dot represents an individual. HR response was adjusted for age, sex, baseline HR, differences in dose, and principal components 1 and 2. Two‐sided P values represented are for the contrast of adjusted means between different genotype groups. *Meta‐analysis was performed assuming fixed effects and using inverse‐variance weighting. bpm indicates beats per minute; HR, heart rate; OR10P1, olfactory receptor family 10 subfamily p member 1; PEAR, Pharmacogenomic Evaluation of Antihypertensive Responses; SNX9, sorting nexin 9.
Figure 4
Figure 4
Regional plot showing the significance of the associations of SNPs with changes in HR in response to β‐blockers used in whites. A, In olfactory receptor family 10 subfamily p member 1 (OR10P1) genetic region. B, In sorting nexin‐9 (SNX9) genetic region. HR indicates heart rate; SNP, single nucleotide polymorphism.
Figure 5
Figure 5
β‐Blocker's HR response score in PEAR and PEAR‐2. HR responses were adjusted for age, sex, baseline HR, differences in dose, and principal components 1 and 2. Genetic variants were coded as follows: (A) rs17117817 (OR10P1 genetic region) T/T=2, G/T=1, G/G=zero, and (B) rs2364349 (SNX9 genetic region) G/G=2, A/G=1, A/A=zero. The box represents the values from the 25% to 75% percentile. The horizontal line represents the median. The vertical line extends from the minimum to the maximum value. Each blue dot represents an individual. bpm indicates beats per minute HR, heart rate; PEAR, Pharmacogenomic Evaluation of Antihypertensive Responses. *Meta‐analysis was performed between PEAR atenolol monotherapy, PEAR atenolol add‐on therapy, and PEAR‐2 metoprolol groups, assuming fixed effects and using inverse‐variance weighting.
Figure 6
Figure 6
Interaction network of replicated genetic signals and protein targets for β‐blockers. Network was created using the STRING database (https://string-db.org/).

References

    1. Hollenberg NK. The role of beta‐blockers as a cornerstone of cardiovascular therapy. Am J Hypertens. 2005;18:165S–168S.
    1. Shin J, Johnson JA. Beta‐blocker pharmacogenetics in heart failure. Heart Fail Rev. 2010;15:187–196.
    1. IMS Institute . Medicines use and spending in the U.S. A review of 2015 and outlook to 2020. Available at: . Accessed February 7, 2017.
    1. Ladage D, Schwinger RH, Brixius K. Cardio‐selective beta‐blocker: pharmacological evidence and their influence on exercise capacity. Cardiovasc Ther. 2013;31:76–83.
    1. Okin PM, Kjeldsen SE, Julius S, Hille DA, Dahlof B, Devereux RB. Effect of changing heart rate during treatment of hypertension on incidence of heart failure. Am J Cardiol. 2012;109:699–704.
    1. Kaplan JR, Manuck SB, Adams MR, Weingand KW, Clarkson TB. Inhibition of coronary atherosclerosis by propranolol in behaviorally predisposed monkeys fed an atherogenic diet. Circulation. 1987;76:1364–1372.
    1. Cucherat M. Quantitative relationship between resting heart rate reduction and magnitude of clinical benefits in post‐myocardial infarction: a meta‐regression of randomized clinical trials. Eur Heart J. 2007;28:3012–3019.
    1. Flannery G, Gehrig‐Mills R, Billah B, Krum H. Analysis of randomized controlled trials on the effect of magnitude of heart rate reduction on clinical outcomes in patients with systolic chronic heart failure receiving beta‐blockers. Am J Cardiol. 2008;101:865–869.
    1. Kolloch R, Legler UF, Champion A, Cooper‐Dehoff RM, Handberg E, Zhou Q, Pepine CJ. Impact of resting heart rate on outcomes in hypertensive patients with coronary artery disease: findings from the INternational VErapamil‐SR/trandolapril STudy (INVEST). Eur Heart J. 2008;29:1327–1334.
    1. McAlister FA, Wiebe N, Ezekowitz JA, Leung AA, Armstrong PW. Meta‐analysis: beta‐blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med. 2009;150:784–794.
    1. Materson BJ, Reda DJ, Cushman WC, Massie BM, Freis ED, Kochar MS, Hamburger RJ, Fye C, Lakshman R, Gottdiener J. Single‐drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. The Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. N Engl J Med. 1993;328:914–921.
    1. Cotarlan V, Brofferio A, Gerhard GS, Chu X, Shirani J. Impact of beta(1)‐ and beta(2)‐adrenergic receptor gene single nucleotide polymorphisms on heart rate response to metoprolol prior to coronary computed tomographic angiography. Am J Cardiol. 2013;111:661–666.
    1. Petrashevskaya NN, Koch SE, Bodi I, Schwartz A. Calcium cycling, historic overview and perspectives. Role for autonomic nervous system regulation. J Mol Cell Cardiol. 2002;34:885–896.
    1. Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF. Beta 1‐adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74:44–52.
    1. Liu J, Liu ZQ, Yu BN, Xu FH, Mo W, Zhou G, Liu YZ, Li Q, Zhou HH. beta1‐Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80:23–32.
    1. Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, Dorn GW, Liggett SB. Beta 1‐adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med. 2003;9:1300–1305.
    1. Terra SG, Hamilton KK, Pauly DF, Lee CR, Patterson JH, Adams KF, Schofield RS, Belgado BS, Hill JA, Aranda JM, Yarandi HN, Johnson JA. Beta1‐adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta‐blocker therapy. Pharmacogenet Genomics. 2005;15:227–234.
    1. Liggett SB, Mialet‐Perez J, Thaneemit‐Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, Wagoner LE, Abraham WT, Anderson JL, Carlquist JF, Krause‐Steinrauf HJ, Lazzeroni LC, Port JD, Lavori PW, Bristow MR. A polymorphism within a conserved beta(1)‐adrenergic receptor motif alters cardiac function and beta‐blocker response in human heart failure. Proc Natl Acad Sci USA. 2006;103:11288–11293.
    1. Beitelshees AL, Zineh I, Yarandi HN, Pauly DF, Johnson JA. Influence of phenotype and pharmacokinetics on beta‐blocker drug target pharmacogenetics. Pharmacogenomics J. 2006;6:174–178.
    1. de Groote P, Helbecque N, Lamblin N, Hermant X, Mc Fadden E, Foucher‐Hossein C, Amouyel P, Dallongeville J, Bauters C. Association between beta‐1 and beta‐2 adrenergic receptor gene polymorphisms and the response to beta‐blockade in patients with stable congestive heart failure. Pharmacogenet Genomics. 2005;15:137–142.
    1. Karlsson J, Lind L, Hallberg P, Michaelsson K, Kurland L, Kahan T, Malmqvist K, Ohman KP, Nystrom E, Melhus H. Beta(1)‐adrenergic receptor gene polymorphisms and response to beta(1)‐adrenergic receptor blockade in patients with essential hypertension. Clin Cardiol. 2004;27:347–350.
    1. Kurnik D, Li C, Sofowora GG, Friedman EA, Muszkat M, Xie HG, Harris PA, Williams SM, Nair UB, Wood AJ, Stein CM. Beta‐1‐adrenoceptor genetic variants and ethnicity independently affect response to beta‐blockade. Pharmacogenet Genomics. 2008;18:895–902.
    1. Liu J, Liu ZQ, Tan ZR, Chen XP, Wang LS, Zhou G, Zhou HH. Gly389Arg polymorphism of beta(1)‐adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther. 2003;74:372–379.
    1. Sehrt D, Meineke I, Tzvetkov M, Gultepe S, Brockmoller J. Carvedilol pharmacokinetics and pharmacodynamics in relation to CYP2D6 and ADRB pharmacogenetics. Pharmacogenomics. 2011;12:783–795.
    1. Johnson JA, Boerwinkle E, Zineh I, Chapman AB, Bailey K, Cooper‐DeHoff RM, Gums J, Curry RW, Gong Y, Beitelshees AL, Schwartz G, Turner ST. Pharmacogenomics of antihypertensive drugs: rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J. 2009;157:442–449.
    1. Hamadeh IS, Langaee TY, Dwivedi R, Garcia S, Burkley BM, Skaar TC, Chapman AB, Gums JG, Turner ST, Gong Y, Cooper‐DeHoff RM, Johnson JA. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96:175–181.
    1. O'Brien E, Waeber B, Parati G, Staessen J, Myers MG. Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ. 2001;322:531–536.
    1. Turner ST, Boerwinkle E, O'Connell JR, Bailey KR, Gong Y, Chapman AB, McDonough CW, Beitelshees AL, Schwartz GL, Gums JG, Padmanabhan S, Hiltunen TP, Citterio L, Donner KM, Hedner T, Lanzani C, Melander O, Saarela J, Ripatti S, Wahlstrand B, Manunta P, Kontula K, Dominiczak AF, Cooper‐DeHoff RM, Johnson JA. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension. 2013;62:391–397.
    1. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome‐wide association studies through pre‐phasing. Nat Genet. 2012;44:955–959.
    1. Purcell S, Neale B, Todd‐Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole‐genome association and population‐based linkage analyses. Am J Hum Genet. 2007;81:559–575.
    1. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta‐analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191.
    1. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta‐Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein‐protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452.
    1. Freemantle N, Cleland J, Young P, Mason J, Harrison J. beta Blockade after myocardial infarction: systematic review and meta regression analysis. BMJ. 1999;318:1730–1737.
    1. Eppinga RN, Hagemeijer Y, Burgess S, Hinds DA, Stefansson K, Gudbjartsson DF, van Veldhuisen DJ, Munroe PB, Verweij N, van der Harst P. Identification of genomic loci associated with resting heart rate and shared genetic predictors with all‐cause mortality. Nat Genet. 2016;48:1557–1563.
    1. den Hoed M, Eijgelsheim M, Esko T, Brundel BJ, Peal DS, Evans DM, Nolte IM, Segre AV, Holm H, Handsaker RE, Westra HJ, Johnson T, Isaacs A, Yang J, Lundby A, Zhao JH, Kim YJ, Go MJ, Almgren P, Bochud M, Boucher G, Cornelis MC, Gudbjartsson D, Hadley D, van der Harst P, Hayward C, den Heijer M, Igl W, Jackson AU, Kutalik Z, Luan J, Kemp JP, Kristiansson K, Ladenvall C, Lorentzon M, Montasser ME, Njajou OT, O'Reilly PF, Padmanabhan S, St Pourcain B, Rankinen T, Salo P, Tanaka T, Timpson NJ, Vitart V, Waite L, Wheeler W, Zhang W, Draisma HH, Feitosa MF, Kerr KF, Lind PA, Mihailov E, Onland‐Moret NC, Song C, Weedon MN, Xie W, Yengo L, Absher D, Albert CM, Alonso A, Arking DE, de Bakker PI, Balkau B, Barlassina C, Benaglio P, Bis JC, Bouatia‐Naji N, Brage S, Chanock SJ, Chines PS, Chung M, Darbar D, Dina C, Dorr M, Elliott P, Felix SB, Fischer K, Fuchsberger C, de Geus EJ, Goyette P, Gudnason V, Harris TB, Hartikainen AL, Havulinna AS, Heckbert SR, Hicks AA, Hofman A, Holewijn S, Hoogstra‐Berends F, Hottenga JJ, Jensen MK, Johansson A, Junttila J, Kaab S, Kanon B, Ketkar S, Khaw KT, Knowles JW, Kooner AS, Kors JA, Kumari M, Milani L, Laiho P, Lakatta EG, Langenberg C, Leusink M, Liu Y, Luben RN, Lunetta KL, Lynch SN, Markus MR, Marques‐Vidal P, Mateo Leach I, McArdle WL, McCarroll SA, Medland SE, Miller KA, Montgomery GW, Morrison AC, Muller‐Nurasyid M, Navarro P, Nelis M, O'Connell JR, O'Donnell CJ, Ong KK, Newman AB, Peters A, Polasek O, Pouta A, Pramstaller PP, Psaty BM, Rao DC, Ring SM, Rossin EJ, Rudan D, Sanna S, Scott RA, Sehmi JS, Sharp S, Shin JT, Singleton AB, Smith AV, Soranzo N, Spector TD, Stewart C, Stringham HM, Tarasov KV, Uitterlinden AG, Vandenput L, Hwang SJ, Whitfield JB, Wijmenga C, Wild SH, Willemsen G, Wilson JF, Witteman JC, Wong A, Wong Q, Jamshidi Y, Zitting P, Boer JM, Boomsma DI, Borecki IB, van Duijn CM, Ekelund U, Forouhi NG, Froguel P, Hingorani A, Ingelsson E, Kivimaki M, Kronmal RA, Kuh D, Lind L, Martin NG, Oostra BA, Pedersen NL, Quertermous T, Rotter JI, van der Schouw YT, Verschuren WM, Walker M, Albanes D, Arnar DO, Assimes TL, Bandinelli S, Boehnke M, de Boer RA, Bouchard C, Caulfield WL, Chambers JC, Curhan G, Cusi D, Eriksson J, Ferrucci L, van Gilst WH, Glorioso N, de Graaf J, Groop L, Gyllensten U, Hsueh WC, Hu FB, Huikuri HV, Hunter DJ, Iribarren C, Isomaa B, Jarvelin MR, Jula A, Kahonen M, Kiemeney LA, van der Klauw MM, Kooner JS, Kraft P, Iacoviello L, Lehtimaki T, Lokki ML, Mitchell BD, Navis G, Nieminen MS, Ohlsson C, Poulter NR, Qi L, Raitakari OT, Rimm EB, Rioux JD, Rizzi F, Rudan I, Salomaa V, Sever PS, Shields DC, Shuldiner AR, Sinisalo J, Stanton AV, Stolk RP, Strachan DP, Tardif JC, Thorsteinsdottir U, Tuomilehto J, van Veldhuisen DJ, Virtamo J, Viikari J, Vollenweider P, Waeber G, Widen E, Cho YS, Olsen JV, Visscher PM, Willer C, Franke L, Erdmann J, Thompson JR, Pfeufer A, Sotoodehnia N, Newton‐Cheh C, Ellinor PT, Stricker BH, Metspalu A, Perola M, Beckmann JS, Smith GD, Stefansson K, Wareham NJ, Munroe PB, Sibon OC, Milan DJ, Snieder H, Samani NJ, Loos RJ. Identification of heart rate‐associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet. 2013;45:621–631.
    1. van den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, Bihlmeyer NA, Fu YP, Weiss S, Lin HJ, Grarup N, Li‐Gao R, Pistis G, Shah N, Brody JA, Muller‐Nurasyid M, Lin H, Mei H, Smith AV, Lyytikainen LP, Hall LM, van Setten J, Trompet S, Prins BP, Isaacs A, Radmanesh F, Marten J, Entwistle A, Kors JA, Silva CT, Alonso A, Bis JC, de Boer R, de Haan HG, de Mutsert R, Dedoussis G, Dominiczak AF, Doney ASF, Ellinor PT, Eppinga RN, Felix SB, Guo X, Hagemeijer Y, Hansen T, Harris TB, Heckbert SR, Huang PL, Hwang SJ, Kahonen M, Kanters JK, Kolcic I, Launer LJ, Li M, Yao J, Linneberg A, Liu S, Macfarlane PW, Mangino M, Morris AD, Mulas A, Murray AD, Nelson CP, Orru M, Padmanabhan S, Peters A, Porteous DJ, Poulter N, Psaty BM, Qi L, Raitakari OT, Rivadeneira F, Roselli C, Rudan I, Sattar N, Sever P, Sinner MF, Soliman EZ, Spector TD, Stanton AV, Stirrups KE, Taylor KD, Tobin MD, Uitterlinden A, Vaartjes I, Hoes AW, van der Meer P, Volker U, Waldenberger M, Xie Z, Zoledziewska M, Tinker A, Polasek O, Rosand J, Jamshidi Y, van Duijn CM, Zeggini E, Jukema JW, Asselbergs FW, Samani NJ, Lehtimaki T, Gudnason V, Wilson J, Lubitz SA, Kaab S, Sotoodehnia N, Caulfield MJ, Palmer CNA, Sanna S, Mook‐Kanamori DO, Deloukas P, Pedersen O, Rotter JI, Dorr M, O'Donnell CJ, Hayward C, Arking DE, Kooperberg C, van der Harst P, Eijgelsheim M, Stricker BH, Munroe PB. Discovery of novel heart rate‐associated loci using the Exome Chip. Hum Mol Genet. 2017;26:2346–2363.
    1. Palatini P, Julius S. Elevated heart rate: a major risk factor for cardiovascular disease. Clin Exp Hypertens. 2004;26:637–644.
    1. Benetos A, Thomas F, Bean K, Albaladejo P, Palatini P, Guize L. Resting heart rate in older people: a predictor of survival to age 85. J Am Geriatr Soc. 2003;51:284–285.
    1. Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens. 2000;13:3S–10S.
    1. Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P. Heart‐rate profile during exercise as a predictor of sudden death. N Engl J Med. 2005;352:1951–1958.
    1. Metra M, Torp‐Pedersen C, Swedberg K, Cleland JG, Di Lenarda A, Komajda M, Remme WJ, Lutiger B, Scherhag A, Lukas MA, Charlesworth A, Poole‐Wilson PA. Influence of heart rate, blood pressure, and beta‐blocker dose on outcome and the differences in outcome between carvedilol and metoprolol tartrate in patients with chronic heart failure: results from the COMET trial. Eur Heart J. 2005;26:2259–2268.
    1. Mulder P, Barbier S, Chagraoui A, Richard V, Henry JP, Lallemand F, Renet S, Lerebours G, Mahlberg‐Gaudin F, Thuillez C. Long‐term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation. 2004;109:1674–1679.
    1. Human genomics. The Genotype‐Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–660.
    1. Hague C, Uberti MA, Chen Z, Bush CF, Jones SV, Ressler KJ, Hall RA, Minneman KP. Olfactory receptor surface expression is driven by association with the beta2‐adrenergic receptor. Proc Natl Acad Sci USA. 2004;101:13672–13676.
    1. Dawson TM, Arriza JL, Jaworsky DE, Borisy FF, Attramadal H, Lefkowitz RJ, Ronnett GV. Beta‐adrenergic receptor kinase‐2 and beta‐arrestin‐2 as mediators of odorant‐induced desensitization. Science. 1993;259:825–829.
    1. Peppel K, Boekhoff I, McDonald P, Breer H, Caron MG, Lefkowitz RJ. G protein‐coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J Biol Chem. 1997;272:25425–25428.
    1. Zaccolo M. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol. 2009;158:50–60.
    1. Jovancevic N, Dendorfer A, Matzkies M, Kovarova M, Heckmann JC, Osterloh M, Boehm M, Weber L, Nguemo F, Semmler J, Hescheler J, Milting H, Schleicher E, Gelis L, Hatt H. Medium‐chain fatty acids modulate myocardial function via a cardiac odorant receptor. Basic Res Cardiol. 2017;112:13.
    1. Howard L, Nelson KK, Maciewicz RA, Blobel CP. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain‐containing proteins, endophilin I and SH3PX1. J Biol Chem. 1999;274:31693–31699.
    1. Thomsen AR, Plouffe B, Cahill TJ III, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Heydenreich FM, Sunahara RK, Skiniotis G, Bouvier M, Lefkowitz RJ. GPCR‐G protein‐beta‐arrestin super‐complex mediates sustained G protein signaling. Cell. 2016;166:907–919.
    1. Soulet F, Yarar D, Leonard M, Schmid SL. SNX9 regulates dynamin assembly and is required for efficient clathrin‐mediated endocytosis. Mol Biol Cell. 2005;16:2058–2067.
    1. Shin N, Ahn N, Chang‐Ileto B, Park J, Takei K, Ahn SG, Kim SA, Di Paolo G, Chang S. SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2. J Cell Sci. 2008;121:1252–1263.
    1. Lundmark R, Carlsson SR. Sorting nexin 9 participates in clathrin‐mediated endocytosis through interactions with the core components. J Biol Chem. 2003;278:46772–46781.
    1. Wang Y, Lauffer B, Von Zastrow M, Kobilka BK, Xiang Y. N‐ethylmaleimide‐sensitive factor regulates beta2 adrenoceptor trafficking and signaling in cardiomyocytes. Mol Pharmacol. 2007;72:429–439.
    1. Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol. 2008;48:537–568.
    1. Lundmark R, Carlsson SR. SNX9—a prelude to vesicle release. J Cell Sci. 2009;122:5–11.
    1. Lundmark R, Carlsson SR. The beta‐appendages of the four adaptor‐protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP‐2. Biochem J. 2002;362:597–607.
    1. Pearse BM, Smith CJ, Owen DJ. Clathrin coat construction in endocytosis. Curr Opin Struct Biol. 2000;10:220–228.
    1. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of beta‐arrestin with the AP‐2 adaptor is required for the clustering of beta 2‐adrenergic receptor into clathrin‐coated pits. J Biol Chem. 2000;275:23120–23126.
    1. Shenoy SK, Lefkowitz RJ. Seven‐transmembrane receptor signaling through beta‐arrestin. Sci STKE. 2005;2005:cm10.

Source: PubMed

3
購読する