Do fatty acids affect fetal programming?

Seray Kabaran, H Tanju Besler, Seray Kabaran, H Tanju Besler

Abstract

Background: In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming.

Methods: Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review.

Results: The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance.

Conclusions: Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

References

    1. Koletzko B, Agostoni C, Carlson SE, Clandinin T, Hornstra G, Neuringer M, et al. Long chain polyunsaturated fatty acids and perinatal development. Acta Paediatr. 2001;90(4):460–4. doi: 10.1111/j.1651-2227.2001.tb00452.x.
    1. Innis SM. Fatty acids and early human development. Early Hum Dev. 2007;83(12):761–6. doi: 10.1016/j.earlhumdev.2007.09.004.
    1. Jensen RG. Lipids in human milk. Lipids. 1999;34(12):1243–71. doi: 10.1007/s11745-999-0477-2.
    1. Innis SM. Essential fatty acid transfer and fetal development. Placenta. 2005;26(Suppl):S70–5. doi: 10.1016/j.placenta.2005.01.005.
    1. Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;7(suppl 2):112–23. doi: 10.1111/j.1740-8709.2011.00318.x.
    1. Bouret SG. Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development. J Nutr. 2010;140(3):653–7. doi: 10.3945/jn.109.112433.
    1. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):83–7.
    1. Dong M, Zheng Q, Ford SP, Nathanielsz PW, Ren J. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J Mol Cell Cardiol. 2013;55(Feb):111–6. doi: 10.1016/j.yjmcc.2012.08.023.
    1. Plagemann A, Harder T, Schellong K, Schulz S, Stupin JH. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab. 2012;26(5):641–53. doi: 10.1016/j.beem.2012.03.008.
    1. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):711–22. doi: 10.1152/ajpregu.00310.2010.
    1. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85(2):571–633. doi: 10.1152/physrev.00053.2003.
    1. Bruce KD, Hanson MA. The developmental origins, mechanisms and implications of metabolic syndrome. J Nutr. 2010;140(3):648–52. doi: 10.3945/jn.109.111179.
    1. Bouret SG. Early life origins of obesity: role of hypothalamic programming. J Pediatr Gastroenterol Nutr. 2009;48(suppl 1):S31–8. doi: 10.1097/MPG.0b013e3181977375.
    1. Symonds ME, Sebert SP, Hyatt MA, Budge H. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol. 2009;5(11):604–10. doi: 10.1038/nrendo.2009.195.
    1. Catalano PM, Ehrenberg HM. The short and long term implications of maternal obesity on the mother and her offspring. BJOG. 2006;113(10):1126–33. doi: 10.1111/j.1471-0528.2006.00989.x.
    1. Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC. Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J. 2006;20(8):1257–9. doi: 10.1096/fj.05-5241fje.
    1. Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci. 2003;18(3):613–21. doi: 10.1046/j.1460-9568.2003.02789.x.
    1. Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L, et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One. 2009;4(6):e5870. doi: 10.1371/journal.pone.0005870.
    1. Brion MJ, Ness AR, Rogers I, Emmett P, Cribb V, Davey Smith G, et al. Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr. 2010;91(3):748–56. doi: 10.3945/ajcn.2009.28623.
    1. Bordoni A, Di Nunzio M, Danesi F, Biagi PL. Polyunsaturated fatty acids: from diet to binding to ppars and other nuclear receptors. Genes Nutr. 2006;1(2):95–106. doi: 10.1007/BF02829951.
    1. Jump DB. N-3 fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol. 2008;19(3):242–7. doi: 10.1097/MOL.0b013e3282ffaf6a.
    1. Uauy R, Mena P, Rojas C. Essential fatty acids in early life: structural and functional role. Proc Nutr Soc. 2000;59(1):3–15. doi: 10.1017/S0029665100000021.
    1. Hanebutt FL, Demmelmair H, Schiessl B, Larque E, Koletzko B. Long-chain polyunsaturated fatty acid transfer across the placenta. Clin Nutr. 2008;27(5):685–93. doi: 10.1016/j.clnu.2008.05.010.
    1. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids. 2008;79(3-5):101–8. doi: 10.1016/j.plefa.2008.09.016.
    1. Van Eijsden M, Hornstra G, van der Wal MF, Vrijkotte TG, Bonsel GJ. Maternal n-3, n-6, and trans fatty acid profile early in pregnancy and term birth weight: a prospective cohort study. Am J Clin Nutr. 2008;87(4):887–95.
    1. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort. Lancet. 2007;369(Feb):578–85. doi: 10.1016/S0140-6736(07)60277-3.
    1. Oken E, Wright RO, Klenman KP, Bellinger D, Amarasiriwardena CJ, Hu H, et al. Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environ Health Perspect. 2005;113(10):1376–80. doi: 10.1289/ehp.8041.
    1. Malcolm CA, McCulloch DL, Montgomery C, Shepherd A, Weaver LT. Maternal docosahexaenoic acid supplementation during pregnancy and visual evoked potential development in term infants: a double blind, prospective, randomized trial. Arch Dis Child Fetal Neonatal Ed. 2003;88(5):383–90. doi: 10.1136/fn.88.5.F383.
    1. Tian C, Fan C, Liu X, Xu F, Qi K. Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation. Clin Nutr. 2011;30(5):659–67. doi: 10.1016/j.clnu.2011.03.002.
    1. Church MW, Jen KL, Dowhan LM, Adams BR, Hotra JW. Excess and deficient omega-3 fatty acid during pregnancy and lactation cause impaired neural transmission in rat pups. Neurotoxicol Teratol. 2008;30(2):107–17. doi: 10.1016/j.ntt.2007.12.008.
    1. Ghio A, Bertolotto A, Resi V, Volpe L, Di Cianni G. Triglyceride metabolism in pregnancy. Adv Clin Chem. 2011;55:133–53. doi: 10.1016/B978-0-12-387042-1.00007-1.
    1. Herrera E, Amusquivar I, López-Soldado I, Ortega H. Maternal lipid metabolism and placental lipid transfer. Horm Res. 2006;65(suppl 3):S59–64. doi: 10.1159/000091507.
    1. Burton GJ, Fowden AL. Review: The placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta. 2012;33(Suppl):S23–7. doi: 10.1016/j.placenta.2011.11.013.
    1. Kasbi-Chadli F, Boquien CY, Simard G, Ulmann L, Mimouni V, Leray V, et al. Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning. J Nutr Biochem. 2014;25(7):726–33. doi: 10.1016/j.jnutbio.2014.03.003.
    1. Haggarty P. Fatty acid supply to the human fetus. Annu Rev Nutr. 2010;30(Aug):237–55. doi: 10.1146/annurev.nutr.012809.104742.
    1. Larque E, Zamora S, Gil A. Dietary trans fatty acids in early life: a review. Early Hum Dev. 2001;65(Suppl):S31–41. doi: 10.1016/S0378-3782(01)00201-8.
    1. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601. doi: 10.1007/BF00400248.
    1. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7. doi: 10.1007/BF00399095.
    1. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.
    1. Neel JV. The “thrifty genotype” in 1998. Nutr Rev. 1999;57(5):2–9. doi: 10.1111/j.1753-4887.1999.tb01782.x.
    1. Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, et al. Developmental plasticity and human health. Nature. 2004;430:419–21. doi: 10.1038/nature02725.
    1. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol. 2007;19(1):1–19. doi: 10.1002/ajhb.20590.
    1. Conceição EP, Franco JG, Oliveira E, Resende AC, Amaral TA, Peixoto-Silva N, et al. Oxidative stress programming in a rat model of postnatal early overnutrition - role of insulin resistance. J Nutr Biochem. 2013;24(1):81–7. doi: 10.1016/j.jnutbio.2012.02.010.
    1. Osmond C, Barker DJ. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect. 2000;108(3):545–53. doi: 10.1289/ehp.00108s3545.
    1. Gicquel C, El-Osta A, Le Bouc Y. Epigenetic regulation and fetal programming. Best Pract Res Clin Endocrinol Metab. 2008;22(1):1–16. doi: 10.1016/j.beem.2007.07.009.
    1. Waterland RA, Garza C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr. 1999;69(2):179–97.
    1. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. J Nutr. 2004;20(1):63–8. doi: 10.1016/j.nut.2003.09.011.
    1. Csaba G. Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol Rev Camb Philos Soc. 1980;55(1):47–63. doi: 10.1111/j.1469-185X.1980.tb00687.x.
    1. Fernandez-Twinn DS, Ozanne SE. Early life nutrition and metabolic programming. Ann N Y Acad Sci. 2010;1212(Nov):78–96. doi: 10.1111/j.1749-6632.2010.05798.x.
    1. Smith NH, Ozanne SE. Intrauterine origins of metabolic disease. Rev Gynaecol Perinat Pract. 2006;6(3-4):211–7. doi: 10.1016/j.rigapp.2006.03.002.
    1. Luo ZC, Fraser WD, Julien P, Deal CL, Audibert F, Smith GN, et al. Tracing the origins of ‘fetal origins’ of adult diseases: programming by oxidative stress? Med Hypotheses. 2006;66(1):38–44. doi: 10.1016/j.mehy.2005.08.020.
    1. Flynn MA, McNeil DA, Maloff B, Mutasingwa D, Wu M, Ford C, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev. 2006;7(supp 1):S7–66. doi: 10.1111/j.1467-789X.2006.00242.x.
    1. Kim SY, Dietz PM, England L, Morrow B, Callaghan WM. Trends in pre-pregnancy obesity in nine states, 1993–2003. Obesity. 2007;15(4):986–93. doi: 10.1038/oby.2007.621.
    1. Schaefer-Graf UM, Graf K, Kulbacka I, Kjos SL, Dudenhausen J, Vetter K, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;31(9):1858–63. doi: 10.2337/dc08-0039.
    1. Ramírez-Vélez R. In utero fetal programming and its impact on health in adulthood. Endocrinol Nutr. 2012;59(6):383–93. doi: 10.1016/j.endonu.2012.02.002.
    1. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, Torsoni AS, Torsoni MA. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem. 2012;23(4):341–8. doi: 10.1016/j.jnutbio.2010.12.011.
    1. Williams L, Seki Y, Vuguin PM, Charron MJ. Animal models of in utero exposure to a high fat diet: A review. Biochim Biophys Acta. 2014;1842(3):507–19. doi: 10.1016/j.bbadis.2013.07.006.
    1. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):83–7.
    1. Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab. 2006;291(4):792–9. doi: 10.1152/ajpendo.00078.2006.
    1. Ong ZY, Muhlhausler BS. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J. 2011;25(7):2167–79. doi: 10.1096/fj.10-178392.
    1. Burgueño AL, Cabrerizo R, Gonzales Mansilla N, Sookoian S, Pirola CJ. Maternal high fat intake during pregnancy programs metabolic-syndrome related phenotypes through liver mitochondrial DNA copy number and transcriptional activity of liver PPARGC1A. J Nutr Biochem. 2013;24(1):6–13. doi: 10.1016/j.jnutbio.2011.12.008.
    1. Siemelink M, Verhoef A, Dormans JA, Span PN, Piersma AH. Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring. Diabetologia. 2002;45(10):1397–403. doi: 10.1007/s00125-002-0918-2.
    1. Fernandes FS, Sardinha FL, Badia-Villanueva M, Carulla P, Herrera E. Tavares do Carmo MG. Dietary lipids during early pregnancy differently influence adipose tissue metabolism and fatty acid composition in pregnant rats with repercussions on pup's development. Prostaglandins, Leukot Essent Fatty Acids. 2012;86(4-5):167–74. doi: 10.1016/j.plefa.2012.03.001.
    1. Silva AP, Guimarães DE, Mizurini DM, Maia IC, Ortiz-Costa S, Sardinha FL, et al. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats. Lipids. 2006;41(6):535–41. doi: 10.1007/s11745-006-5002-0.
    1. Bouret SG. Early life origins of obesity: role of hypothalamic programming. J Pediatr Gastroenterol Nutr. 2009;48(supp 1):S31–8. doi: 10.1097/MPG.0b013e3181977375.
    1. Muhlhausler BS, Adam CL, McMillen IC. Maternal nutrition and the programming of obesity: the brain. Organogenesis. 2008;4(3):144–52. doi: 10.4161/org.4.3.6503.
    1. Markakis EA. Development of the neuroendocrine hypothalamus. Front Neuroendocrinol. 2002;23(3):257–91. doi: 10.1016/S0091-3022(02)00003-1.
    1. Morris MJ, Chen H. Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int J Obes (Lond) 2009;33(1):115–22. doi: 10.1038/ijo.2008.213.
    1. Sellayaha D, Seka K, Anthonya FW, Watkins AJ, Osmond C, Fleming TP, et al. Appetite regulatory mechanisms and food intake in mice are sensitive to mismatch in diets between pregnancy and postnatal periods. Brain Res. 2008;1237(Oct):146–52. doi: 10.1016/j.brainres.2008.07.126.
    1. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. 2005;493(1):63–71. doi: 10.1002/cne.20786.
    1. Page KC, Malik RE, Ripple JA, Anday EK. Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am J Physiol Regul Integr Comp Physiol. 2009;297(4):1049–57. doi: 10.1152/ajpregu.90585.2008.
    1. Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL. Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology. 2010;151(4):1622–32. doi: 10.1210/en.2009-1019.
    1. Vogt MC, Paeger L, Hess S, Steculorum SM, Awazawa M, Hampel B, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156(3):495–509. doi: 10.1016/j.cell.2014.01.008.
    1. Farooqi IS, O’Rahilly S. Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab. 2008;4(10):569–77. doi: 10.1038/ncpendmet0966.
    1. Farooqi IS, O’Rahilly S. Genetic factors in human obesity. Obes Rev. 2007;8(Suppl 1):S37–40. doi: 10.1111/j.1467-789X.2007.00315.x.
    1. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119(2):323–35.
    1. Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A, et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta. 2014;35(3):171–7. doi: 10.1016/j.placenta.2014.01.003.
    1. Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C, et al. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res. 2010;51(8):2352–61. doi: 10.1194/jlr.M006866.
    1. Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93(4):780–8. doi: 10.3945/ajcn.110.005801.
    1. Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. Temporal changes in dietary fats: role of n-6 polyunsatırated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res. 2006;45(3):203–36. doi: 10.1016/j.plipres.2006.01.003.
    1. Kim HK, Della-Fera M, Lin J, Baile CA. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr. 2006;136(12):2965–9.
    1. Mathai ML, Soueid M, Chen N, Jayasooriya AP, Sinclair AJ, Wlodek ME, et al. Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signalling? Obes Res. 2004;12(11):1886–94. doi: 10.1038/oby.2004.234.
    1. Muhlhausler BS, Gibson RA, Makrides M. The effect of maternal omega-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy and/or lactationon body fat mass in the offspring: a systematic review of animal studies. Prostaglandins Leukot Essent Fatty Acids. 2011;85(2):83–8. doi: 10.1016/j.plefa.2011.04.027.
    1. Novak EM, Lee EK, Innis SM, Keller BO. Identification of novel protein targets regulated by maternal dietary fatty acid composition in neonatal rat liver. J Proteomics. 2009;73(1):41–9. doi: 10.1016/j.jprot.2009.07.008.
    1. Roy S, Kale A, Dangat K, Sable P, Kulkarni A, Joshi S. Maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids: Implications for neurodevelopmental risk in the rat offspring. Brain Dev. 2012;34(1):64–71. doi: 10.1016/j.braindev.2011.01.002.
    1. Carlson SE. Docosahexaenoic acid supplementation in pregnancy and lactation. Am J Clin Nutr. 2009;89(2):678–84. doi: 10.3945/ajcn.2008.26811E.

Source: PubMed

3
購読する