Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin

S Lund, G D Holman, O Schmitz, O Pedersen, S Lund, G D Holman, O Schmitz, O Pedersen

Abstract

The acute effects of contraction and insulin on the glucose transport and GLUT4 glucose transporter translocation were investigated in rat soleus muscles by using a 3-O-methylglucose transport assay and the sensitive exofacial labeling technique with the impermeant photoaffinity reagent 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannose-4-y loxy)-2- propylamine (ATB-BMPA), respectively. Addition of wortmannin, which inhibits phosphatidylinositol 3-kinase, reduced insulin-stimulated glucose transport (8.8 +/- 0.5 mumol per ml per h vs. 1.4 +/- 0.1 mumol per ml per h) and GLUT4 translocation [2.79 +/- 0.20 pmol/g (wet muscle weight) vs. 0.49 +/- 0.05 pmol/g (wet muscle weight)]. In contrast, even at a high concentration (1 microM), wortmannin had no effect on contraction-mediated glucose uptake (4.4 +/- 0.1 mumol per ml per h vs. 4.1 +/- 0.2 mumol per ml per h) and GLUT4 cell surface content [1.75 +/- 0.16 pmol/g (wet muscle weight) vs. 1.52 +/- 0.16 pmol/g (wet muscle weight)]. Contraction-mediated translocation of the GLUT4 transporters to the cell surface was closely correlated with the glucose transport activity and could account fully for the increment in glucose uptake after contraction. The combined effects of contraction and maximal insulin stimulation were greater than either stimulation alone on glucose transport activity (11.5 +/- 0.4 mumol per ml per h vs. 5.6 +/- 0.2 mumol per ml per h and 9.0 +/- 0.2 mumol per ml per h) and on GLUT4 translocation [4.10 +/- 0.20 pmol/g (wet muscle weight) vs. 1.75 +/- 0.25 pmol/g (wet muscle weight) and 3.15 +/- 0.18 pmol/g (wet muscle weight)]. The results provide evidence that contraction stimulates translocation of GLUT4 in skeletal muscle through a mechanism distinct from that of insulin.

References

    1. J Biol Chem. 1993 Aug 25;268(24):17820-9
    1. J Biol Chem. 1993 May 5;268(13):9187-90
    1. J Biol Chem. 1994 Feb 4;269(5):3568-73
    1. Biochem J. 1994 Feb 1;297 ( Pt 3):539-45
    1. J Appl Physiol (1985). 1994 Feb;76(2):979-85
    1. Biochem J. 1994 May 1;299 ( Pt 3):755-9
    1. Mol Cell Biol. 1994 Jul;14(7):4902-11
    1. Biochem J. 1994 Jun 15;300 ( Pt 3):631-5
    1. J Biol Chem. 1994 Jul 1;269(26):17516-24
    1. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7415-9
    1. Nature. 1994 Sep 29;371(6496):378-9
    1. Am J Physiol. 1994 Sep;267(3 Pt 1):E461-6
    1. J Appl Physiol (1985). 1994 Oct;77(4):1597-601
    1. J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):1045-9
    1. Am J Physiol. 1984 Dec;247(6 Pt 1):E726-31
    1. Biochem J. 1985 Apr 15;227(2):565-72
    1. Am J Physiol. 1985 Sep;249(3 Pt 1):C226-32
    1. Am J Physiol. 1985 Sep;249(3 Pt 1):C233-7
    1. Am J Physiol. 1986 Jul;251(1 Pt 1):E21-6
    1. Am J Physiol. 1987 Jul;253(1 Pt 1):E12-20
    1. FEBS Lett. 1988 Oct 10;238(2):235-9
    1. J Appl Physiol (1985). 1988 Aug;65(2):909-13
    1. Endocrinology. 1989 Jan;124(1):449-54
    1. Am J Physiol. 1989 Feb;256(2 Pt 1):E227-30
    1. Am J Physiol. 1989 May;256(5 Pt 1):E580-7
    1. J Biol Chem. 1990 Jan 15;265(2):987-91
    1. Am J Physiol. 1989 Dec;257(6 Pt 1):C1128-34
    1. FEBS Lett. 1990 Feb 26;261(2):256-60
    1. Am J Physiol. 1990 Apr;258(4 Pt 1):E667-72
    1. J Biol Chem. 1990 Aug 15;265(23):13427-30
    1. Biochem J. 1990 Aug 1;269(3):615-22
    1. J Biol Chem. 1990 Oct 25;265(30):18172-9
    1. Am J Physiol. 1990 Oct;259(4 Pt 1):E593-8
    1. J Biol Chem. 1992 Sep 5;267(25):17710-5
    1. Am J Physiol. 1993 Feb;264(2 Pt 1):E270-8
    1. FEBS Lett. 1993 Sep 20;330(3):312-8

Source: PubMed

3
購読する