Influence of hemoadsorption during cardiopulmonary bypass on blood vesicle count and function

Lukas Wisgrill, Christian Lamm, Lena Hell, Johannes Thaler, Angelika Berger, Rene Weiss, Viktoria Weber, Harald Rinoesl, Michael J Hiesmayr, Andreas Spittler, Martin H Bernardi, Lukas Wisgrill, Christian Lamm, Lena Hell, Johannes Thaler, Angelika Berger, Rene Weiss, Viktoria Weber, Harald Rinoesl, Michael J Hiesmayr, Andreas Spittler, Martin H Bernardi

Abstract

Background: Extracorporeal circulation during major cardiac surgery triggers a systemic inflammatory response affecting the clinical course and outcome. Recently, extracellular vesicle (EV) research has shed light onto a novel cellular communication network during inflammation. Hemoadsorption (HA) systems have shown divergent results in modulating the systemic inflammatory response during cardiopulmonary bypass (CPB) surgery. To date, the effect of HA on circulating microvesicles (MVs) in patients undergoing CPB surgery is unknown.

Methods: Count and function of MVs, as part of the extracellular vesicle fraction, were assessed in a subcohort of a single-center, blinded, controlled study investigating the effect of the CytoSorb device during CPB. A total of 18 patients undergoing elective CPB surgery with (n = 9) and without (n = 9) HA device were included in the study. MV phenotyping and counting was conducted via flow cytometry and procoagulatory potential was measured by tissue factor-dependent MV assays.

Results: Both study groups exhibited comparable counts and post-operative kinetics in MV subsets. Tissue factor-dependent procoagulatory potential was not detectable in plasma at any timepoint. Post-operative course and laboratory parameters showed no correlation with MV counts in patients undergoing CPB surgery.

Conclusion: Additional artificial surfaces to the CPB-circuit introduced by the use of the HA device showed no effect on circulating MV count and function in these patients. Larger studies are needed to assess and clarify the effect of HA on circulating vesicle counts and function. Trial registration ClinicalTrials.Gov Identifier: NCT01879176; registration date: June 17, 2013; https://ichgcp.net/clinical-trials-registry/NCT01879176.

Keywords: Blood vesicle; Cardiopulmonary bypass; Extracellular vesicles; Hemoadsorption; Microvesicles.

Conflict of interest statement

MHB and MJH have received travel funding for a lecture from CytoSorbents Europe, GmbH. All other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow cytometric setup and gating strategy. Green fluorescent silica beads (1000 nm) were used to define the side scatter properties and the microvesicle (MV) gate was set right underneath the silica bead population (left panel). Using an unlabeled plasma sample, the scatter and gate settings were validated as seen in the right panel without any trigger. All events above the MV-gate were assumed to be larger than 1000 nm and were separately analyzed as apoptotic bodies (ABs). a Next, the fluorescence trigger was set for the APC-channel (Annexin V (AnnV)) using an AnnV-stained plasma sample without calcium, preventing calcium-dependent labelling of AnnV (left Panel). The fluorescence trigger was set and validated using an AnnV-labelled plasma sample (right panel; b). The gating strategy of CD41 + MVs (platelet-derived MVs; left panel) and CD235 + (erythrocyte-derived MVs; right panel) (c)
Fig. 2
Fig. 2
Individual count of circulating blood vesicles. Individual microvesicle (MV) and apoptotic body (AB) counts (events/µL) in plasma samples from each patients undergoing major cardiac surgery with cardiopulmonary bypass (CPB) in Control group (n = 9; a) and Cytosorb group (n = 9; b) at different timepoints
Fig. 3
Fig. 3
Count and hemolysis parameter correlation of circulating blood vesicles. Vesicle counts (events/µL) in plasma samples from patients undergoing major cardiac surgery with cardiopulmonary bypass (CPB) with (n = 9; CytoSorb; black triangles) or without (n = 9; control; gray circles) hemoadsorption. Samples were analyzed using flow cytometry. Data are presented as mean ± standard deviation (a). Scanning electron microscopy was performed to analyze a hemoadsorption column directly after use. Respective pictures are shown in ×400 and ×5000 magnification (b). Correlation analysis was performed to assess the link between vesicle counts, hemolysis and infection parameters. The color represents the respective rho-value and the presence of circles indicate a significant p-value < 0.05 (c)
Fig. 4
Fig. 4
Correlation analysis of blood cytokine/alarmin levels and microvesicle count. Correlation analysis of total microvesicle (total MV) counts and HMGB1 plasma levels (a). Correlation plot of investigated cytokines, alarmins and inotropic drugs with MV counts. The color represents the respective rho-value and the presence of circles indicate a significant p-value < 0.05 (b)

References

    1. Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 2003;75(2):S715–S720.
    1. Tomic V, Russwurm S, Moller E, Claus RA, Blaess M, Brunkhorst F, et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005;112(19):2912–2920.
    1. Landis RC, Brown JR, Fitzgerald D, Likosky DS, Shore-Lesserson L, Baker RA, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: a critical review of the evidence base. J Extra Corpor Technol. 2014;46(3):197–211.
    1. Bernardi MH, Rinoesl H, Dragosits K, Ristl R, Hoffelner F, Opfermann P, et al. Effect of hemoadsorption during cardiopulmonary bypass surgery—a blinded, randomized, controlled pilot study using a novel adsorbent. Crit Care. 2016;20:96.
    1. Bernardi MH, Rinoesl H, Ristl R, Weber U, Wiedemann D, Hiesmayr MJ. Hemoadsorption does not affect hemolysis during cardiopulmonary bypass. ASAIO J. 2019;65(7):738–743.
    1. Basu R, Pathak S, Goyal J, Chaudhry R, Goel RB, Barwal A. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: a case study. Indian J Crit Care Med. 2014;18(12):822–824.
    1. Hassan K, Kannmacher J, Wohlmuth P, Budde U, Schmoeckel M, Geidel S. Cytosorb adsorption during emergency cardiac operations in patients at high risk of bleeding. Ann Thorac Surg. 2019;108:45–51.
    1. Ankawi G, Xie Y, Yang B, Xie Y, Xie P, Ronco C. What have we learned about the use of Cytosorb adsorption columns. Blood Purif. 2019;48:196–202.
    1. Tomescu D, Popescu M, David C, Dima S. Clinical effects of hemoadsorption with CytoSorb((R)) in patients with severe acute pancreatitis: a case series. Int J Artif Organs. 2019;42(4):190–193.
    1. Weiss R, Spittler A, Schmitz G, Fischer MB, Weber V. Thrombocyte adhesion and release of extracellular microvesicles correlate with surface morphology of adsorbent polymers for lipid apheresis. Biomacromolecules. 2014;15(7):2648–2655.
    1. Weiss R, Eichhorn T, Spittler A, Micusik M, Fischer MB, Weber V. Release and cellular origin of extracellular vesicles during circulation of whole blood over adsorbent polymers for lipid apheresis. J Biomed Mater Res B Appl Biomater. 2017;105(3):636–646.
    1. Nolan JP, Duggan E. Analysis of individual extracellular vesicles by flow cytometry. Methods Mol Biol. 2018;1678:79–92.
    1. Iba T, Ogura H. Role of extracellular vesicles in the development of sepsis-induced coagulopathy. J Intensive Care. 2018;6:68.
    1. Wisgrill L, Lamm C, Hartmann J, Preissing F, Dragosits K, Bee A, et al. Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A. 2016;89(7):663–672.
    1. Arraud N, Gounou C, Turpin D, Brisson AR. Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry Part A. 2016;89(2):184–195.
    1. Aass HC, Ovstebo R, Troseid AM, Kierulf P, Berg JP, Henriksson CE. Fluorescent particles in the antibody solution result in false TF- and CD14-positive microparticles in flow cytometric analysis. Cytometry A. 2011;79(12):990–999.
    1. Kubota K, Egi M, Mizobuchi S. Haptoglobin administration in cardiovascular surgery patients: its association with the risk of postoperative acute kidney injury. Anesth Analg. 2017;124(6):1771–1776.
    1. Wetz AJ, Richardt EM, Schotola H, Bauer M, Brauer A. Haptoglobin and free haemoglobin during cardiac surgery-is there a link to acute kidney injury? Anaesth Intensive Care. 2017;45(1):58–66.
    1. Poon KS, Palanisamy K, Chang SS, Sun KT, Chen KB, Li PC, et al. Plasma exosomal miR-223 expression regulates inflammatory responses during cardiac surgery with cardiopulmonary bypass. Sci Rep. 2017;7(1):10807.
    1. Emanueli C, Shearn AI, Laftah A, Fiorentino F, Reeves BC, Beltrami C, et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac MicroRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS ONE. 2016;11(4):e0154274.
    1. Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ, Jansen PG, et al. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation. 1997;96(10):3534–3541.
    1. Almizraq RJ, Holovati JL, Acker JP. Characteristics of extracellular vesicles in red blood concentrates change with storage time and blood manufacturing method. Transfus Med Hemother. 2018;45(3):185–193.
    1. Chen Y, Li G, Liu Y, Werth VP, Williams KJ, Liu ML. Translocation of endogenous danger signal HMGB1 from nucleus to membrane microvesicles in macrophages. J Cell Physiol. 2016;231(11):2319–2326.
    1. Huang LF, Yao YM, Dong N, Yu Y, He LX, Sheng ZY. Association of high mobility group box-1 protein levels with sepsis and outcome of severely burned patients. Cytokine. 2011;53(1):29–34.
    1. Schiraldi M, Raucci A, Munoz LM, Livoti E, Celona B, Venereau E, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012;209(3):551–563.
    1. Bianchi ME. HMGB1 loves company. J Leukoc Biol. 2009;86(3):573–576.
    1. Hreggvidsdottir HS, Ostberg T, Wahamaa H, Schierbeck H, Aveberger AC, Klevenvall L, et al. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol. 2009;86(3):655–662.
    1. Coleman LG, Jr, Maile R, Jones SW, Cairns BA, Crews FT. HMGB1/IL-1beta complexes in plasma microvesicles modulate immune responses to burn injury. PLoS ONE. 2018;13(3):e0195335.

Source: PubMed

3
購読する