Relevance of cortisol and copeptin blood concentration changes in an experimental pain model

Claudine A Blum, Laëtitia Velly, Christine Brochet, Frédéric Ziegler, Marie-Pierre Tavolacci, Pierre Hausfater, Virginie Eve Lvovschi, Claudine A Blum, Laëtitia Velly, Christine Brochet, Frédéric Ziegler, Marie-Pierre Tavolacci, Pierre Hausfater, Virginie Eve Lvovschi

Abstract

The effect of pain and analgesics on stress biomarkers is not well studied. We evaluated the effect of acute pain and analgesics on serum cortisol and copeptin in an experimental pain model in healthy volunteers. Healthy volunteers presented at 8 a.m. for an experimental pain stimulation. Cortisol and copeptin levels were measured before, during and after electrophysiological stimulation, first before and then during opioid delivery. Difference in biomarker levels compared to baseline levels was calculated, and potential influencing factors were evaluated by linear regression analysis. Cortisol decreased by 13% during the 10 min of rest at baseline, but copeptin did not change significantly. Cortisol had a median decrease of -24% or -83 nmol/l (-44 to -124 nmol/l, p = 0.0002) during the electrophysiological stimulation training session, while the median difference for copeptin was -22% or -1.01 pmol/l (-2.35 to 0.08 pmol/l, p = 0.0003). After administration of opioids, cortisol did not decrease but increased by 3% (p = 0.043), indicating an increasing opioids effect on cortisol. This effect was not visible for copeptin (median change -0.003 pmol/l (-0.50 to 0.24), p = 0.45). In this experimental pain model performed in the morning, moderate pain did not have a relevant effect on cortisol or copeptin levels, whereas opioids led to a discrete peak of cortisol.Clinicaltrials.gov identifier: NCT01975753 (registered on November 5, 2013, before start of recruitment).

Conflict of interest statement

C. A. B. received an unrestricted research grant from Novo Nordisk. ThermoFisher SA, the manufacturer of the copeptin assay, provided the assays for copeptin measurements. PH has received lectures and educational honorarium from ThermoFisher Scientific and bioMérieux unrelated to this study. All other authors have no competing interest linked to the whole trial.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Experimental pain model setup. Adapted from Willer. VAS visual analog pain scale rating from 0 to 100, 0 meaning no pain and 100 the worst imaginable pain.
Figure 2
Figure 2
Time plot of cortisol during all test sessions. RS resting session. ∆ = −13%, p < 0.0001. LS learning session. ∆ = −24%, p = 0.0002. L1 time point when reaching target pain. L + 15 time point L1 plus 15 min. L + 45 time point L1 plus 45 min. OS opioid session. ∆ = −18%, p = 0.0491. O1 time point of administration of opioids in addition to target pain. O + 7 7 min after O1. O + 35 35 min after O1. Arrows point to the corresponding time points. Boxes and whiskers represent mean and SD. Spearman rank correlation between cortisol levels and VAS scores at the trial endpoint time showed no correlation between VAS scores and cortisol levels (Spearman r −0.42 (95% CI −0.74 to 0.055), p = 0.07).
Figure 3
Figure 3
Time plot of copeptin during all test sessions. RS resting session. ∆ = −0.9%, p = 0.14. LS learning session. ∆ = −22%, p = 0.0003. L1 time point when reaching target pain. L + 15 time point L1 plus 15 min. L + 45 time point L1 plus 45 min. OS opioid session. ∆ = −6%, p = 0.1. O1 time point of administration of opioids in addition to target pain. O + 7 7 min after O1. O + 35 35 min after O1. Arrows point to the corresponding time points. Boxes and whiskers represent mean and SD. Spearman rank correlation between copeptin levels and VAS scores at the trial endpoint time showed no correlation between VAS scores and copeptin levels (Spearman r − 0.26 (95% CI −0.65 to 0.25), p = 0.31).

References

    1. Cordell WH, et al. The high prevalence of pain in emergency medical care. Am. J. Emerg. Med. 2002;20:165–169. doi: 10.1053/ajem.2002.32643.
    1. Stang AS, Hartling L, Fera C, Johnson D, Ali S. Quality indicators for the assessment and management of pain in the emergency department: A systematic review. Pain Res. Manag. 2014;19:e179–190. doi: 10.1155/2014/269140.
    1. Brennan F, Carr DB, Cousins M. Pain management: A fundamental human right. Anesth. Analg. 2007;105:205–221. doi: 10.1213/01.ane.0000268145.52345.55.
    1. Woolf AD, et al. Musculoskeletal pain in Europe: Its impact and a comparison of population and medical perceptions of treatment in eight European countries. Ann. Rheum Dis. 2004;63:342–347. doi: 10.1136/ard.2003.010223.
    1. Anand KJ. Pain, plasticity, and premature birth: A prescription for permanent suffering? Nat. Med. 2000;6:971–973. doi: 10.1038/79658.
    1. Weisman SJ, Bernstein B, Schechter NL. Consequences of inadequate analgesia during painful procedures in children. Arch. Pediatr. Adolesc. Med. 1998;152:147–149. doi: 10.1001/archpedi.152.2.147.
    1. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002;53:865–871. doi: 10.1016/S0022-3999(02)00429-4.
    1. Woda A, Picard P, Dutheil F. Dysfunctional stress responses in chronic pain. Psychoneuroendocrinology. 2016;71:127–135. doi: 10.1016/j.psyneuen.2016.05.017.
    1. Aggarwal VR, et al. Functioning of the hypothalamic-pituitary-adrenal and growth hormone axes in frequently unexplained disorders: Results of a population study. Eur. J. Pain. 2014;18:447–454. doi: 10.1002/j.1532-2149.2013.00413.x.
    1. Tennant F. Hormone testing and treatment enters pain care. Hosp. Pract. 2014;1995(42):7–13. doi: 10.3810/hp.2014.12.1154.
    1. Goodson NJ, et al. Cardiovascular risk factors associated with the metabolic syndrome are more prevalent in people reporting chronic pain: Results from a cross-sectional general population study. Pain. 2013;154:1595–1602. doi: 10.1016/j.pain.2013.04.043.
    1. Aloisi AM, Vodo S, Buonocore M. Pain and thyroid hormones. Neurol. Sci. 2013;34:1501–1508. doi: 10.1007/s10072-013-1440-7.
    1. Blackburn-Munro G. Hypothalamo-pituitary-adrenal axis dysfunction as a contributory factor to chronic pain and depression. Curr. Pain Headache Rep. 2004;8:116–124. doi: 10.1007/s11916-004-0025-9.
    1. Blackburn-Munro G, Blackburn-Munro R. Pain in the brain: Are hormones to blame? Trends Endocrinol. Metab. 2003;14:20–27. doi: 10.1016/S1043-2760(02)00004-8.
    1. Cooper MS. Role of endocrine dysfunction in frequently unexplained disorders. Eur. J. Pain. 2014;18:299–300. doi: 10.1002/j.1532-2149.2013.00429.x.
    1. Legrain V, et al. Cognitive aspects of nociception and pain: Bridging neurophysiology with cognitive psychology. Neurophysiol. Clin. 2012;42:325–336. doi: 10.1016/j.neucli.2012.06.003.
    1. Cortelli P, Giannini G, Favoni V, Cevoli S, Pierangeli G. Nociception and autonomic nervous system. Neurol. Sci. 2013;34(Suppl 1):S41–46. doi: 10.1007/s10072-013-1391-z.
    1. Usunoff KG, Popratiloff A, Schmitt O, Wree A. Functional neuroanatomy of pain. Adv. Anat. Embryol. Cell Biol. 2006;184:1–115.
    1. Chapman CR, Tuckett RP, Song CW. Pain and stress in a systems perspective: Reciprocal neural, endocrine, and immune interactions. J. Pain. 2008;9:122–145. doi: 10.1016/j.jpain.2007.09.006.
    1. Cowen R, Stasiowska MK, Laycock H, Bantel C. Assessing pain objectively: The use of physiological markers. Anaesthesia. 2015;70:828–847. doi: 10.1111/anae.13018.
    1. Kawi J, Lukkahatai N, Inouye J, Thomason D, Connelly K. Effects of exercise on select biomarkers and associated outcomes in chronic pain conditions: Systematic review. Biol. Res. Nurs. 2016;18:147–159. doi: 10.1177/1099800415599252.
    1. Breivik H, et al. Assessment of pain. Br. J. Anaesth. 2008;101:17–24. doi: 10.1093/bja/aen103.
    1. Hartrick CT. A four-category verbal rating scale (VRS-4), an 11-point numeric rating scale (NRS-11), and a 100-mm visual analog scale (VAS) were compared in the assessment of acute pain after oral surgery. Clin. J. Pain. 2001;17:104–105. doi: 10.1097/00002508-200103000-00016.
    1. Tracey I, Woolf CJ, Andrews NA. Composite pain biomarker signatures for objective assessment and effective treatment. Neuron. 2019;101:783–800. doi: 10.1016/j.neuron.2019.02.019.
    1. Basler HD. Acute pain management in paediatrics and geriatrics - Pain assessment: Which scale for which patient? Anasthesiol. Intensivmed Notfallmed. Schmerzther. AINS. 2011;46:334–341. doi: 10.1055/s-0031-1277977.
    1. Gelinas C, Puntillo KA, Joffe AM, Barr J. A validated approach to evaluating psychometric properties of pain assessment tools for use in nonverbal critically ill adults. Semin Respir Crit Care Med. 2013;34:153–168. doi: 10.1055/s-0033-1342970.
    1. Greisen J, et al. Acute pain induces an instant increase in natural killer cell cytotoxicity in humans and this response is abolished by local anaesthesia. Br. J. Anaesth. 1999;83:235–240. doi: 10.1093/bja/83.2.235.
    1. Goodin BR, et al. Salivary cortisol and soluble tumor necrosis factor-alpha receptor II responses to multiple experimental modalities of acute pain. Psychophysiology. 2012;49:118–127. doi: 10.1111/j.1469-8986.2011.01280.x.
    1. Arai YC, et al. Small correlation between salivary alpha-amylase activity and pain intensity in patients with cancer pain. Acta Anaesthesiol. Scand. 2009;53:408. doi: 10.1111/j.1399-6576.2008.01833.x.
    1. Shirasaki S, et al. Correlation between salivary alpha-amylase activity and pain scale in patients with chronic pain. Reg. Anesth. Pain Med. 2007;32:120–123. doi: 10.1016/j.rapm.2006.11.008.
    1. Charier D, et al. Assessing pain in the postoperative period: Analgesia Nociception Index(TM)versus pupillometry. Br. J. Anaesth. 2019;123:e322–e327. doi: 10.1016/j.bja.2018.09.031.
    1. Shahiri TS, Richebe P, Richard-Lalonde M, Gelinas C. Description of the validity of the Analgesia Nociception Index (ANI) and Nociception Level Index (NOL) for nociception assessment in anesthetized patients undergoing surgery: A systematized review. J. Clin. Monit. Comput. 2021 doi: 10.1007/s10877-021-00772-3.
    1. Nir RR, Sinai A, Moont R, Harari E, Yarnitsky D. Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest. Clin. Neurophysiol. 2012;123:605–612. doi: 10.1016/j.clinph.2011.08.006.
    1. Matsumura H, Imai R, Gondo M, Watanabe K. Evaluation of pain intensity measurement during the removal of wound dressing material using 'the PainVision system' for quantitative analysis of perception and pain sensation in healthy subjects. Int. Wound J. 2012;9:451–455. doi: 10.1111/j.1742-481X.2011.00911.x.
    1. Nir RR, Sinai A, Raz E, Sprecher E, Yarnitsky D. Pain assessment by continuous EEG: Association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain Res. 2010;1344:77–86. doi: 10.1016/j.brainres.2010.05.004.
    1. Willer JC. Clinical exploration of nociception with the use of reflexologic techniques. Neurophysiol. Clin. 1990;20:335–356. doi: 10.1016/s0987-7053(05)80203-5.
    1. Sandrini G, et al. Age-related changes in excitability of nociceptive flexion reflex. An electrophysiological study in school-age children and young adults. Funct. Neurol. 1989;4:53–58.
    1. Oliveira, M. I. et al. On the use of evoked potentials for quantification of pain. in Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1578–1581. 10.1109/EMBC.2012.6346245 (2012).
    1. Chapman CR. Pain perception and assessment. Miner. Anestesiol. 2005;71:413–417.
    1. DeVon HA, Piano MR, Rosenfeld AG, Hoppensteadt DA. The association of pain with protein inflammatory biomarkers: A review of the literature. Nurs. Res. 2014;63:51–62. doi: 10.1097/NNR.0000000000000013.
    1. Uesato M, et al. Salivary amylase activity is useful for assessing perioperative stress in response to pain in patients undergoing endoscopic submucosal dissection of gastric tumors under deep sedation. Gastric Cancer. 2010;13:84–89. doi: 10.1007/s10120-009-0541-8.
    1. Shen YS, et al. Diagnostic performance of initial salivary alpha-amylase activity for acute myocardial infarction in patients with acute chest pain. J. Emerg. Med. 2012;43:553–560. doi: 10.1016/j.jemermed.2011.06.040.
    1. Campos MJ, Raposo NR, Ferreira AP, Vitral RW. Salivary alpha-amylase activity: A possible indicator of pain-induced stress in orthodontic patients. Pain Med. 2011;12:1162–1166. doi: 10.1111/j.1526-4637.2011.01185.x.
    1. Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front. Behav. Neurosci. 2018;12:127. doi: 10.3389/fnbeh.2018.00127.
    1. Katan M, et al. Copeptin, a stable peptide derived from the vasopressin precursor, correlates with the individual stress level. Neuro Endocrinol. Lett. 2008;29:341–346.
    1. Dyball RE. Stimuli for the release of neurohypophysial hormones. Br. J. Pharmacol. Chemother. 1968;33:319–328. doi: 10.1111/j.1476-5381.1968.tb00993.x.
    1. Rohleder N, Nater UM, Wolf JM, Ehlert U, Kirschbaum C. Psychosocial stress-induced activation of salivary alpha-amylase: An indicator of sympathetic activity? Ann. N. Y. Acad. Sci. 2004;1032:258–263. doi: 10.1196/annals.1314.033.
    1. Maeder MT, et al. Copeptin response to clinical maximal exercise tests. Clin. Chem. 2010;56:674–676. doi: 10.1373/clinchem.2009.136309.
    1. Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Biological and psychological markers of stress in humans: Focus on the trier social stress test. Neurosci. Biobehav. Rev. 2014;38:94–124. doi: 10.1016/j.neubiorev.2013.11.005.
    1. Reichlin T, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J. Am. Coll. Cardiol. 2009;54:60–68. doi: 10.1016/j.jacc.2009.01.076.
    1. Winzeler B, et al. Postoperative copeptin concentration predicts diabetes insipidus after pituitary surgery. J. Clin. Endocrinol. Metab. 2015;100:2275–2282. doi: 10.1210/jc.2014-4527.
    1. Timper K, et al. Diagnostic accuracy of copeptin in the differential diagnosis of the polyuria-polydipsia syndrome: A prospective multicenter study. J. Clin. Endocrinol. Metab. 2015;100:2268–2274. doi: 10.1210/jc.2014-4507.
    1. Nigro N, et al. Evaluation of copeptin and commonly used laboratory parameters for the differential diagnosis of profound hyponatraemia in hospitalized patients: 'The Co-MED Study'. Clin. Endocrinol. (Oxf) 2017;86:456–462. doi: 10.1111/cen.13243.
    1. Christ-Crain M. Vasopressin and copeptin in health and disease. Rev. Endocr. Metab. Disord. 2019;20:283–294. doi: 10.1007/s11154-019-09509-9.
    1. Siegenthaler J, Walti C, Urwyler SA, Schuetz P, Christ-Crain M. Copeptin concentrations during psychological stress: The PsyCo study. Eur. J. Endocrinol. 2014;171:737–742. doi: 10.1530/EJE-14-0405.
    1. Blum CA, et al. Copeptin for risk stratification in non-traumatic headache in the emergency setting: A prospective multicenter observational cohort study. J. Headache Pain. 2017;18:21. doi: 10.1186/s10194-017-0733-2.
    1. Isman FK, et al. Copeptin is a predictive biomarker of severity in acute pancreatitis. Am. J. Emerg. Med. 2013;31:690–692. doi: 10.1016/j.ajem.2012.12.016.
    1. Horiuchi Y, et al. Biomarkers enhance discrimination and prognosis of type 2 myocardial infarction. Circulation. 2020;142:1532–1544. doi: 10.1161/CIRCULATIONAHA.120.046682.
    1. Mauermann E, Blum CA, Lurati Buse G, Bandschapp O, Ruppen W. Time course of copeptin during a model of experimental pain and hyperalgesia: A randomised volunteer crossover trial. Eur. J. Anaesthesiol. 2017;34:306–314. doi: 10.1097/EJA.0000000000000592.
    1. Zohar S, Chevret S. The continual reassessment method: Comparison of Bayesian stopping rules for dose-ranging studies. Stat. Med. 2001;20:2827–2843. doi: 10.1002/sim.920.
    1. Dixon WJ. Staircase bioassay: The up-and-down method. Neurosci. Biobehav. Rev. 1991;15:47–50. doi: 10.1016/s0149-7634(05)80090-9.
    1. Duflot T, et al. Pharmacokinetic modeling of morphine and its glucuronides: Comparison of nebulization versus intravenous route in healthy volunteers. Pharmacometrics Syst. Pharmacol. 2021 doi: 10.1002/psp4.12735.
    1. Moher D, et al. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Morphine—Grossesse et allaitement. Centre de Référence sur les Agents Tératogènes (2020).
    1. Willer JC. Comparative study of perceived pain and nociceptive flexion reflex in man. Pain. 1977;3:69–80. doi: 10.1016/0304-3959(77)90036-7.
    1. Rhudy JL, France CR. Defining the nociceptive flexion reflex (NFR) threshold in human participants: A comparison of different scoring criteria. Pain. 2007;128:244–253. doi: 10.1016/j.pain.2006.09.024.
    1. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 2006;52:112–119. doi: 10.1373/clinchem.2005.060038.
    1. Kacheva S, Kolk K, Morgenthaler NG, Brabant G, Karges W. Gender-specific co-activation of arginine vasopressin and the hypothalamic-pituitary-adrenal axis during stress. Clin. Endocrinol. (Oxf) 2015;82:570–576. doi: 10.1111/cen.12608.
    1. Quinlan PT. Misuse of power: In defence of small-scale science. Nat. Rev. Neurosci. 2013;14:585. doi: 10.1038/nrn3475-c1.
    1. Button KS, et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013;14:365–376. doi: 10.1038/nrn3475.
    1. Herrera AY, Faude S, Nielsen SE, Locke M, Mather M. Effects of hormonal contraceptive phase and progestin generation on stress-induced cortisol and progesterone release. Neurobiol. Stress. 2019;10:100151. doi: 10.1016/j.ynstr.2019.100151.
    1. Beglinger S, Drewe J, Christ-Crain M. The circadian rhythm of copeptin, the C-terminal portion of arginine vasopressin. J. Biomark. 2017;2017:4737082. doi: 10.1155/2017/4737082.
    1. Quigley ME, Yen SS. A mid-day surge in cortisol levels. J. Clin. Endocrinol. Metab. 1979;49:945–947. doi: 10.1210/jcem-49-6-945.
    1. Linkowski P, et al. Twin study of the 24-h cortisol profile: Evidence for genetic control of the human circadian clock. Am. J. Physiol. 1993;264:E173–181. doi: 10.1152/ajpendo.1993.264.2.E173.
    1. Thuma JR, Gilders R, Verdun M, Loucks AB. Circadian rhythm of cortisol confounds cortisol responses to exercise: Implications for future research. J. Appl. Physiol. 1995;1985(78):1657–1664. doi: 10.1152/jappl.1995.78.5.1657.
    1. Darzy KH, Dixit KC, Shalet SM, Morgenthaler NG, Brabant G. Circadian secretion pattern of copeptin, the C-terminal vasopressin precursor fragment. Clin. Chem. 2010;56:1190–1191. doi: 10.1373/clinchem.2009.141689.
    1. Aloisi AM, et al. Endocrine consequences of opioid therapy. Psychoneuroendocrinology. 2009;34(Suppl 1):S162–168. doi: 10.1016/j.psyneuen.2009.05.013.
    1. Kuhnel A, et al. Psychosocial stress reactivity habituates following acute physiological stress. Hum. Brain Mapp. 2020;41:4010–4023. doi: 10.1002/hbm.25106.
    1. Vuong C, Van Uum SH, O'Dell LE, Lutfy K, Friedman TC. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr. Rev. 2010;31:98–132. doi: 10.1210/er.2009-0009.
    1. Fenske W, et al. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome–Revisiting the direct and indirect water deprivation tests. J. Clin. Endocrinol. Metab. 2011;96:1506–1515. doi: 10.1210/jc.2010-2345.
    1. Szinnai G, et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 2007;92:3973–3978. doi: 10.1210/jc.2007-0232.
    1. Kirschbaum C, et al. Effects of fasting and glucose load on free cortisol responses to stress and nicotine. J. Clin. Endocrinol. Metab. 1997;82:1101–1105. doi: 10.1210/jcem.82.4.3882.

Source: PubMed

3
購読する