Regeneration of functional alveoli by adult human SOX9+ airway basal cell transplantation

Qiwang Ma, Yu Ma, Xiaotian Dai, Tao Ren, Yingjie Fu, Wenbin Liu, Yufei Han, Yingchuan Wu, Yu Cheng, Ting Zhang, Wei Zuo, Qiwang Ma, Yu Ma, Xiaotian Dai, Tao Ren, Yingjie Fu, Wenbin Liu, Yufei Han, Yingchuan Wu, Yu Cheng, Ting Zhang, Wei Zuo

Abstract

Irreversible destruction of bronchi and alveoli can lead to multiple incurable lung diseases. Identifying lung stem/progenitor cells with regenerative capacity and utilizing them to reconstruct functional tissue is one of the biggest hopes to reverse the damage and cure such diseases. Here we showed that a rare population of SOX9+ basal cells (BCs) located at airway epithelium rugae can regenerate adult human lung. Human SOX9+ BCs can be readily isolated by bronchoscopic brushing and indefinitely expanded in feeder-free condition. Expanded human SOX9+ BCs can give rise to alveolar and bronchiolar epithelium after being transplanted into injured mouse lung, with air-blood exchange system reconstructed and recipient's lung function improved. Manipulation of lung microenvironment with Pirfenidone to suppress TGF-β signaling could further boost the transplantation efficiency. Moreover, we conducted the first autologous SOX9+ BCs transplantation clinical trial in two bronchiectasis patients. Lung tissue repair and pulmonary function enhancement was observed in patients 3-12 months after cell transplantation. Altogether our current work indicated that functional adult human lung structure can be reconstituted by orthotopic transplantation of tissue-specific stem/progenitor cells, which could be translated into a mature regenerative therapeutic strategy in near future.

Keywords: alveoli; bronchiectasis; lung; regeneration; stem cell; transplantation.

Figures

Figure 1
Figure 1
Isolation and characterization of BCs from SOX9+human airway. (A) Diagram showing the process of clonogenic BCs isolation and expansion. (B) Bronchoscopic image showing brushing of cells from human airway. (C) Left, BC colonies grown on feeder cells; right, anti-KRT5 and anti-P63 immunostaining of BC colonies with nuclei counterstain. Human sample number n = 10. Scale bar, 100 μm. (D) Left, BCs in human airway by anti-KRT5 and anti-P63 immunostaining. Inset, high magnification with club cell (CC10+, cyan color) costaining; right, hematoxylin & eosin staining of the same section. Br, bronchus. Scale bar, 100 μm. (E) Heatmap showing transcriptome profile correlation value of BC clones and brush-off tissues. (F) Expression heatmap of selected, differentially expressed genes (P < 0.05) comparing BC clones and brush-off tissues. (G) Protein-protein interaction network of selected genes with high expression level in BC clones. (H) Enriched gene ontology classes of BC clones versus brush-off tissues
Figure 2
Figure 2
Feeder-free expansion of SOX9+ BCs. (A) Immunostaining of SOX9+ BCs with anti-P63, anti-KRT5 and anti-SOX9 antibodies. (B) SOX9+ BCs in rugae of 3rd order human airway by anti-SOX9, anti-P63 and anti-CC10 immunostaining. Scale bar, 100 μm. (C) SOX9+ BCs in rugae of 3rd order human airway by anti-KI67 immunostaining. (D) BC colony cultured on feeder-free condition. (E) Karyotyping of cultured BCs. (F) qPCR showing alveolar and bronchial epithelium marker gene expression of human lung sample and SOX9+ BCs in early (P2) and late (P8) passages. n = 3, biological replicates. Error bars, S.E.M. (G) qPCR showing progenitor cell marker (Krt5, P63 and SOX9) gene expression of human lung sample and SOX9+ BCs in early (P2) and late (P8) passages. n = 3, biological replicates. Error bars, S.E.M. (H) Western blotting showing marker gene expression of human lung sample and SOX9+ BCs in early (P2) and late (P8) passages
Figure 3
Figure 3
Transplantated SOX9+ BCs regenerate functional human lungin vivo. (A) Left, direct fluorescence image under stereomicroscope showing NOD-SCID mouse lung without (upper panel) or with (lower panel) GFP-labeled SOX9+ BC transplantation. Right, cryo-section and direct fluorescence imaging of transplanted GFP-labeled SOX9+ BCs in lung parenchyma. Scale bar, 100 μm. (B) Immunofluorescence imaging of transplanted GFP-labeled SOX9+ BCs in lung parenchyma with human specific Lamin A+C marker costaining. (C) Fully differentiated GFP+ cells lost SOX9 marker expression (arrowhead indicated). Scale bar, 10 μm. (D) Confocal image with human specific Lamin A+C immunostaining (HuLamin) showing regenerated type I (AQP5+) alveolar cells. No type II (SPC+) cells were observed. (E) Confocal image showing regenerated AEC1 (AQP5+ and HOPX+). AQP5 as a membrane-bound protein distributes on surface of GFP+ cells. Arrowheads indicated the overlay of HOPX with GFP signal in nucleus. Scale bar, 20 μm. (F) qPCR with human specific primers showing alveolar and bronchiolar epithelium marker gene expression in SOX9+ BC transplanted chimeric lung (AEC1: AQP5 and HOPX; AEC2: SPB and LAMP3; bronchiolar cells: SCGB1A1 and MUC1). Biological replicates, n = 3. Error bars, S.E.M. (G) Left, clonogenic BCs isolated from human cervix epithelium obtained by biopsy. Right, transplantation of equal numbers of BCs from lung and cervix indicated different incorporation efficiency
Figure 4
Figure 4
Regenerated alveoli with functional epithelium-capillary system. (A) Transplanted SOX9+ BCs (anti-GFP) and capillary endothelium marker (anti-CD34). Scale bar, 100 μm. (B) Confocal image of SOX9+ BCs regenerated alveoli (Alv) and the neighboring capillary blood vessel (Bv). Left, immunofluorescence; right, bright field. Scale bar, 20 μm. (C) Confocal image showing the basement membrane (ITGB1+, white color, arrowhead indicated) between regenerated alveoli epithelium and capillary endothelium (CD31+). Scale bar, 10 μm. (D) Confocal image showing the cell adherens junction (E-cadherin+, white color) between regenerated alveoli epithelial cells. Scale bar, 20 μm. (E) Confocal image showing the cell tight junction (ZO-1+) between regenerated alveoli epithelial cells. Scale bar, 20 μm. (F) Direct fluorescence image of the transplanted GFP-labeled SOX9+ BCs (green) and bright-field image of tail vein delivered gold nanoparticles (AuNPs) of the same region (brown). Scale bar, 100 μm. (G) Direct fluorescence image of the transplanted GFP-labeled SOX9+ BCs (green) and bright-field image of intratracheally delivered gold nanoparticles (AuNPs) of the same region (brown). Scale bar, 100 μm
Figure 5
Figure 5
BC transplantation rescued mouse pulmonary function. (A) Injured mouse lung without or with GFP-labeled SOX9+ BCs transplantation by anti-GFP and anti-Fibronectin co-staining. Scale bar, 200 μm. (B) Left, immunofluorescence image of injured mouse lung transplanted with GFP-labeled SOX9+ BCs; right, immunostaining on the same section showing exclusion of α-SMA+ myofibroblasts from GFP+ area. Scale bar, 200 μm. (C) CO2 partial pressure of mouse arterial blood before and 1 month after bleomycin-induced injury with or without SOX9+ BCs transplantation. Each dot indicates an individual mouse. (D) O2 partial pressure of mouse arterial blood 1 month after bleomycin-induced injury with or without SOX9+ BCs transplantation. Each dot indicates an individual mouse. (E) O2 saturation of mouse arterial blood before and 1 month after bleomycin-induced injury with or without SOX9+ BCs transplantation. Each dot indicates an individual mouse
Figure 6
Figure 6
TGF-β signaling modulates SOX9+BC proliferation. (A) Direct fluorescence image of mouse lung transplanted with 1 × 106 GFP-labeled SOX9+ BCs under dissection microscope. Each lung was from mouse with indicated treatment and harvested 7 days after transplantation. The left lobes were analyzed and the GFP+ cell numbers (×106) were counted by flow cytometry analysis. Biological replicates, n = 3. PFD, Pirfenidone. (B) SOX9+ BCs were stimulated with 10 ng/mL TGF-β for 2 h, with or without 1 mg/mL Pirfenidone treatment overnight. Western blotting of cell lysates with anti-phosphated-Smad2/3 and anti-total Smad2/3 antibodies was performed to examine the activation of TGF-β pathway. (C) Direct fluorescence imaging of GFP-labeled SOX9+ BCs cultured in a 6-well plate in the absence or presence of 10 ng/mL TGF-β. Scale bar, 200 μm. (D) Quantification of clonogenicity of SOX9+ BCs in the presence of 10 ng/mL TGF-β or 10 mmol SB. SB, TGF-β type I receptor inhibitor SB-431542. Technical replicates n = 3. (E) WST viability assay of SOX9+ BCs treated by 10 ng/mL TGF-β or 5 mmol TGF-β inhibitor SB-431542, or their combination. Technical replicates n = 3. (F) qPCR showing cell cycle-related gene expression level of SOX9+ BCs with 10 ng/mL TGF-β treatment for indicated h. Biological replicates, n = 3
Figure 7
Figure 7
Autologous SOX9+ BC transplantation: a pilot clinical study. (A) Cultured SOX9+ BCs from two patients of bronchiectasis. (B) Diagram showing the number of SOX9+ BCs (×107) transplanted into each lobe of Patient 1/Patient 2. Five lobes are labeled with different colors. Note the Patient 1 undertook left lower lobectomy a decade ago. (C) Representative images of consecutive CT scan show the regional recovery of bronchiectasis (yellow square) 1 year after autologous SOX9+ BC transplantation in Patient 2. (D) Measurement of pulmonary function and exercise capacity in both patients: FEV1 (forced expiratory volume in 1 second), FVC (forced vital capacity), DLCO/VA (diffusing capacity of the lung for carbon monoxide adjusted by the alveoli volume) were shown as absolute value and percentage to predicted level. For each parameter, percentage >80% was regarded as clinically normal

References

    1. Asano S, Takemura T, Katoh K, Taneda M, Kitagawa M. Epithelial regeneration after diffuse alveolar damage in relation to underlying disease and DAD stage: an autopsy study. Journal of medical and dental sciences. 2011;58:113–121.
    1. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BL. Type 2 alveolar cells are stem cells in adult lung. The Journal of clinical investigation. 2013;123:3025–3036. doi: 10.1172/JCI68782.
    1. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development. 1997;124:4867–4878.
    1. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH. Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. The Journal of clinical investigation. 2011;121:2855–2862. doi: 10.1172/JCI57673.
    1. Cheng Y, Samia CA, Meyers JD, Panagopoulos I, Fei B, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. Journal of the American Chemical Society. 2008;130:10643–10647. doi: 10.1021/ja801631c.
    1. Chilosi M, Poletti V, Murer B, Lestani M, Cancellieri A, Montagna L, Piccoli P, Cangi G, Semenzato G, Doglioni C. Abnormal re-epithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of deltaN-p63. Laboratory investigation; a journal of technical methods and pathology. 2002;82:1335–1345. doi: 10.1097/01.LAB.0000032380.82232.67.
    1. Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell. 2013;154:274–284. doi: 10.1016/j.cell.2013.07.004.
    1. Copelan EA. Hematopoietic stem-cell transplantation. The New England journal of medicine. 2006;354:1813–1826. doi: 10.1056/NEJMra052638.
    1. Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507:190–194. doi: 10.1038/nature12930.
    1. Gallico GG, 3rd, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. The New England journal of medicine. 1984;311:448–451. doi: 10.1056/NEJM198408163110706.
    1. Hackett NR, Shaykhiev R, Walters MS, Wang R, Zwick RK, Ferris B, Witover B, Salit J, Crystal RG. The human airway epithelial basal cell transcriptome. PloS one. 2011;6:e18378. doi: 10.1371/journal.pone.0018378.
    1. Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell stem cell. 2014;15:123–138. doi: 10.1016/j.stem.2014.07.012.
    1. Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature biotechnology. 2014;32:84–91. doi: 10.1038/nbt.2754.
    1. Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature neuroscience. 2013;16:1154–1161. doi: 10.1038/nn.3447.
    1. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–835. doi: 10.1016/j.cell.2005.03.032.
    1. King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L, Lederer DJ, Nathan SD, Pereira CA, Sahn SA, Sussman R, Swigris JJ, Noble PW, Group AS. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. The New England journal of medicine. 2014;370:2083–2092. doi: 10.1056/NEJMoa1402582.
    1. Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nature medicine. 2014;20:822–832. doi: 10.1038/nm.3642.
    1. Mannino DM. COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest. 2002;121:121S–126S. doi: 10.1378/chest.121.5_suppl.121S.
    1. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & growth factor reviews. 2009;20:419–427. doi: 10.1016/j.cytogfr.2009.10.002.
    1. Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J. Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell stem cell. 2016;19:217–231. doi: 10.1016/j.stem.2016.05.012.
    1. Moulton BC, Barker AF. Pathogenesis of bronchiectasis. Clinics in chest medicine. 2012;33:211–217. doi: 10.1016/j.ccm.2012.02.004.
    1. Nichane M, Javed A, Sivakamasundari V, Ganesan M, Ang LT, Kraus P, Lufkin T, Loh KM, Lim B. Isolation and 3D expansion of multipotent Sox9(+) mouse lung progenitors. Nature methods. 2017;14:1205–1212. doi: 10.1038/nmeth.4498.
    1. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP. Regeneration and orthotopic transplantation of a bioartificial lung. Nature medicine. 2010;16:927–933. doi: 10.1038/nm.2193.
    1. Perl AK, Kist R, Shan Z, Scherer G, Whitsett JA. Normal lung development and function after Sox9 inactivation in the respiratory epithelium. Genesis. 2005;41:23–32. doi: 10.1002/gene.20093.
    1. Phan SH. Genesis of the myofibroblast in lung injury and fibrosis. Proceedings of the American Thoracic Society. 2012;9:148–152. doi: 10.1513/pats.201201-011AW.
    1. Rajagopal J, Carroll TJ, Guseh JS, Bores SA, Blank LJ, Anderson WJ, Yu J, Zhou Q, McMahon AP, Melton DA. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development. 2008;135:1625–1634. doi: 10.1242/dev.015495.
    1. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation. 2001;72:1478–1485. doi: 10.1097/00007890-200111150-00002.
    1. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. The New England journal of medicine. 2010;363:147–155. doi: 10.1056/NEJMoa0905955.
    1. Rockich BE, Hrycaj SM, Shih HP, Nagy MS, Ferguson MA, Kopp JL, Sander M, Wellik DM, Spence JR. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:E4456–4464. doi: 10.1073/pnas.1311847110.
    1. Rosen C, Shezen E, Aronovich A, Klionsky YZ, Yaakov Y, Assayag M, Biton IE, Tal O, Shakhar G, Ben-Hur H, Shneider D, Vaknin Z, Sadan O, Evron S, Freud E, Shoseyov D, Wilschanski M, Berkman N, Fibbe WE, Hagin D, Hillel-Karniel C, Krentsis IM, Bachar-Lustig E, Reisner Y. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nature medicine. 2015;21:869–879. doi: 10.1038/nm.3889.
    1. Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, Lynch JP., 3rd Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs. 2004;64:405–430. doi: 10.2165/00003495-200464040-00005.
    1. Smirnova NF, Schamberger AC, Nayakanti S, Hatz R, Behr J, Eickelberg O. Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respiratory research. 2016;17:83. doi: 10.1186/s12931-016-0404-x.
    1. ten Hacken NH, Wijkstra PJ, Kerstjens HA. Treatment of bronchiectasis in adults. Bmj. 2007;335:1089–1093. doi: 10.1136/bmj.39384.657118.80.
    1. Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, Cardoso WV. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. The Journal of biological chemistry. 2008;283:29532–29544. doi: 10.1074/jbc.M801565200.
    1. Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, Zissimopoulos A, Boussios N, Dardzinski B, Gritzalis D, Antoniadis A, Froudarakis M, Kolios G, Bouros D. A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. Journal of translational medicine. 2013;11:171. doi: 10.1186/1479-5876-11-171.
    1. Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG, Treutlein B, Tan K, Tan V, Liu FC, Looney MR, Matthay MA, Rock JR, Chapman HA. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517:621–625. doi: 10.1038/nature14112.
    1. Wang X, Yamamoto Y, Wilson LH, Zhang T, Howitt BE, Farrow MA, Kern F, Ning G, Hong Y, Khor CC, Chevalier B, Bertrand D, Wu L, Nagarajan N, Sylvester FA, Hyams JS, Devers T, Bronson R, Lacy DB, Ho KY, Crum CP, McKeon F, Xian W. Cloning and variation of ground state intestinal stem cells. Nature. 2015;522:173–178. doi: 10.1038/nature14484.
    1. Wimberley NW, Bass JB, Jr, Boyd BW, Kirkpatrick MB, Serio RA, Pollock HM. Use of a bronchoscopic protected catheter brush for the diagnosis of pulmonary infections. Chest. 1982;81:556–562. doi: 10.1378/chest.81.5.556.
    1. Zhang HY, Gharaee-Kermani M, Zhang K, Karmiol S, Phan SH. Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. The American journal of pathology. 1996;148:527–537.
    1. Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA, Yamamoto Y, Wang X, Lim SJ, Vincent M, Lessard M, Crum CP, Xian W, McKeon F. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature. 2015;517:616–620. doi: 10.1038/nature13903.

Source: PubMed

3
購読する