Wound Healing and Omega-6 Fatty Acids: From Inflammation to Repair

Jéssica R Silva, Beatriz Burger, Carolina M C Kühl, Thamiris Candreva, Mariah B P Dos Anjos, Hosana G Rodrigues, Jéssica R Silva, Beatriz Burger, Carolina M C Kühl, Thamiris Candreva, Mariah B P Dos Anjos, Hosana G Rodrigues

Abstract

Wound healing is an evolutionarily conserved process that is essential for species survival. Wound healing involves a series of biochemical and cellular events that are tightly controlled, divided into 3 concomitant and overlapping phases: inflammation, proliferation, and remodelling. Poor wound healing or a chronic wound represents a silent epidemic that affects billions of people worldwide. Considering the involvement of immune cells in its resolution, recent studies are focused on investigating the roles of immune nutrients such as amino acids, minerals, and fatty acids on wound healing. Among the fatty acids, much attention has been given to omega-6 (ω-6) fatty acids since they can modulate cell migration and proliferation, phagocytic capacity, and production of inflammatory mediators. The present review summarizes current knowledge about the role of ω-6 fatty acids in the wound healing context.

Figures

Figure 1
Figure 1
Wound healing process. The illustration shows the inflammatory, proliferative, and remodelling phases of wound healing. Early stages of wound healing include coagulation and activation of inflammatory cells. The proliferative stage involves proliferation of fibroblasts and angiogenesis. The remodelling phase includes restoration of the barrier and contraction of the wound by myofibroblasts. The process is orchestrated by immune cells and growth factors and cytokines and chemokines (listed below) [8]. HF = hair follicle; BV = blood vessels; TNF = tumor necrosis factor; IL-1beta = interleucina 1beta; IL-6 = interleucina 6; ROS = reactive oxygen species; CXCL2 = chemokine (C-X-C motif) ligand 2; IFN-gamma = interferon-gamma; VEGF = vascular endothelial growth factor; TGF-beta = transforming growth factor beta; FGF = fibroblast growth factor; KGF = keratinocyte growth factor; MCP1 = monocyte chemoattractant protein-1; IGF = insulin growth factor; TIMPs = tissue inhibitors of metalloproteinases; MMPs = matrix matalloproteinases; PDGF = platelet-derived growth factor; EGF = epithelial growth factor.
Figure 2
Figure 2
Effects of linoleic acid (LA), conjugated linoleic acid (CLA), gamma linolenic acid (GLA), and arachidonic acid on wound healing phases.

References

    1. Brem H., Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. Journal of Clinical Investigation. 2007;117(5):1219–1222. doi: 10.1172/JCI32169.
    1. Wu Y.-S., Chen S.-N. Apoptotic cell: linkage of inflammation and wound healing. Frontiers in Pharmacology. 2014;5:p. 1. doi: 10.3389/fphar.2014.00001.
    1. Loree J. M., Pereira A. A. L., Lam M., et al. Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clinical Cancer Research. 2018;24(5):1062–1072. doi: 10.1158/1078-0432.ccr-17-2484.
    1. Dunnill C., Patton T., Brennan J., et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. International Wound Journal. 2017;14(1):89–96. doi: 10.1111/iwj.12557.
    1. Nauta T., van Hinsbergh V., Koolwijk P. Hypoxic signaling during tissue repair and regenerative medicine. International Journal of Molecular Sciences. 2014;15(11):19791–19815. doi: 10.3390/ijms151119791.
    1. Menter D. G., Kopetz S., Hawk E., et al. Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Reviews. 2017;36(2):199–213. doi: 10.1007/s10555-017-9682-0.
    1. Xue M., Jackson C. J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care. 2015;4(3):119–136. doi: 10.1089/wound.2013.0485.
    1. Eming S. A., Martin P., Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine. 2014;6(265, article 265sr6) doi: 10.1126/scitranslmed.3009337.
    1. Tracy L. E., Minasian R. A., Caterson E. J. Extracellular matrix and dermal fibroblast function in the healing wound. Advances in Wound Care. 2016;5(3):119–136. doi: 10.1089/wound.2014.0561.
    1. Landen N. X., Li D., Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 2016;73(20):3861–3885. doi: 10.1007/s00018-016-2268-0.
    1. Raphael W., Sordillo L. Dietary polyunsaturated fatty acids and inflammation: the role of phospholipid biosynthesis. International Journal of Molecular Sciences. 2013;14(10):21167–21188. doi: 10.3390/ijms141021167.
    1. Calder P. C. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology. 2013;75(3):645–662. doi: 10.1111/j.1365-2125.2012.04374.x.
    1. Shaw T. J., Martin P. Wound repair at a glance. Journal of Cell Science. 2009;122(18):3209–3213. doi: 10.1242/jcs.031187.
    1. Gurtner G. C., Werner S., Barrandon Y., Longaker M. T. Wound repair and regeneration. Nature. 2008;453(7193):314–321. doi: 10.1038/nature07039.
    1. Eming S. A., Wynn T. A., Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–1030. doi: 10.1126/science.aam7928.
    1. Chow O., Barbul A. Immunonutrition: role in wound healing and tissue regeneration. Advances in Wound Care. 2014;3(1):46–53. doi: 10.1089/wound.2012.0415.
    1. Li J., Chen J., Kirsner R. Pathophysiology of acute wound healing. Clinics in Dermatology. 2007;25(1):9–18. doi: 10.1016/j.clindermatol.2006.09.007.
    1. Chilton F., Murphy R., Wilson B., et al. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014;6(5):1993–2022. doi: 10.3390/nu6051993.
    1. Reinke J. M., Sorg H. Wound repair and regeneration. European Surgical Research. 2012;49(1):35–43. doi: 10.1159/000339613.
    1. MacLeod A. S., Mansbridge J. N. The innate immune system in acute and chronic wounds. Advances in Wound Care. 2016;5(2):65–78. doi: 10.1089/wound.2014.0608.
    1. Sander A. L., Sommer K., Neumayer T., et al. Soluble epoxide hydrolase disruption as therapeutic target for wound healing. Journal of Surgical Research. 2013;182(2):362–367. doi: 10.1016/j.jss.2012.10.034.
    1. Järbrink K., Ni G., Sönnergren H., et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Systematic Reviews. 2016;5(1):p. 152. doi: 10.1186/s13643-016-0329-y.
    1. Sen C. K., Gordillo G. M., Roy S., et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair and Regeneration. 2009;17(6):763–771. doi: 10.1111/j.1524-475X.2009.00543.x.
    1. Frykberg R. G., Banks J. Challenges in the treatment of chronic wounds. Advances in Wound Care. 2015;4(9):560–582. doi: 10.1089/wound.2015.0635.
    1. Copeland K., Purvis A. R. A retrospective chart review of chronic wound patients treated with topical oxygen therapy. Advances in Wound Care. 2017;6(5):143–152. doi: 10.1089/wound.2017.0729.
    1. Heyer K., Augustin M., Protz K., Herberger K., Spehr C., Rustenbach S. J. Effectiveness of advanced versus conventional wound dressings on healing of chronic wounds: systematic review and meta-analysis. Dermatology. 2013;226(2):172–184. doi: 10.1159/000348331.
    1. Wicke C., Bachinger A., Coerper S., Beckert S., Witte M. B., Königsrainer A. Aging influences wound healing in patients with chronic lower extremity wounds treated in a specialized wound care center. Wound Repair and Regeneration. 2009;17(1):25–33. doi: 10.1111/j.1524-475X.2008.00438.x.
    1. Guo S., Dipietro L. A. Factors affecting wound healing. Journal of Dental Research. 2010;89(3):219–229. doi: 10.1177/0022034509359125.
    1. Anderson K., Hamm R. L. Factors that impair wound healing. Journal of the American College of Clinical Wound Specialists. 2012;4(4):84–91. doi: 10.1016/j.jccw.2014.03.001.
    1. Okonkwo U., DiPietro L. Diabetes and wound angiogenesis. International Journal of Molecular Sciences. 2017;18(7):p. 1419. doi: 10.3390/ijms18071419.
    1. Ennis W. J., Sui A., Bartholomew A. Stem cells and healing: impact on inflammation. Advances in Wound Care. 2013;2(7):369–378. doi: 10.1089/wound.2013.0449.
    1. Das L., Bhaumik E., Raychaudhuri U., Chakraborty R. Role of nutraceuticals in human health. Journal of Food Science and Technology. 2012;49(2):173–183. doi: 10.1007/s13197-011-0269-4.
    1. Calder P. C. Fatty acids and inflammation: the cutting edge between food and pharma. European Journal of Pharmacology. 2011;668(Supplement 1):S50–S58. doi: 10.1016/j.ejphar.2011.05.085.
    1. Kepler C. R., Hirons K. P., McNeill J., Tove S. B. Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. Journal of Biological Chemistry. 1966;241(6):1350–1354.
    1. Alexander J. W., Supp D. M. Role of arginine and omega-3 fatty acids in wound healing and infection. Advances in Wound Care. 2014;3(11):682–690. doi: 10.1089/wound.2013.0469.
    1. Calder P. C. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2(3):355–374. doi: 10.3390/nu2030355.
    1. McCusker M. M., Grant-Kels J. M. Healing fats of the skin: the structural and immunologic roles of the ω-6 and ω-3 fatty acids. Clinics in Dermatology. 2010;28(4):440–451. doi: 10.1016/j.clindermatol.2010.03.020.
    1. Rodrigues H. G., Vinolo M. A. R., Sato F. T., et al. Oral administration of linoleic acid induces new vessel formation and improves skin wound healing in diabetic rats. PloS One. 2016;11(10, article e0165115) doi: 10.1371/journal.pone.0165115.
    1. Kaur N., Chugh V., Gupta A. K. Essential fatty acids as functional components of foods-a review. Journal of Food Science and Technology. 2014;51(10):2289–2303. doi: 10.1007/s13197-012-0677-0.
    1. Declair V. The usefulness of topical application of essential fatty acids (EFA) to prevent pressure ulcers. Ostomy/Wound Management. 1997;43(5):48–52.
    1. Magalhães M. S. F., Fechine F. V., de Macedo R. N., et al. Effect of a combination of medium chain triglycerides, linoleic acid, soy lecithin and vitamins A and E on wound healing in rats. Acta Cirurgica Brasileira. 2008;23(3):262–269. doi: 10.1590/S0102-86502008000300009.
    1. Rojo L. E., Villano C. M., Joseph G., et al. Wound-healing properties of nut oil from Pouteria lucuma. Journal of Cosmetic Dermatology. 2010;9(3):185–195. doi: 10.1111/j.1473-2165.2010.00509.x.
    1. Bardaa S., Ben Halima N., Aloui F., et al. Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids in Health and Disease. 2016;15(1):p. 73. doi: 10.1186/s12944-016-0237-0.
    1. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Medicine. 2000;6(4):389–395. doi: 10.1038/74651.
    1. Cardoso C. R. B., Souza M. A., Ferro E. A. V., Favoreto S., Pena J. D. O. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair and Regeneration. 2004;12(2):235–243. doi: 10.1111/j.1067-1927.2004.012216.x.
    1. Víteček J., Lojek A., Valacchi G., Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators of Inflammation. 2012;2012:22. doi: 10.1155/2012/318087.318087
    1. Frank S., Kämpfer H., Wetzler C., Pfeilschifter J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney International. 2002;61(3):882–888. doi: 10.1046/j.1523-1755.2002.00237.x.
    1. Pereira L. M., Hatanaka E., Martins E. F., et al. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochemistry and Function. 2008;26(2):197–204. doi: 10.1002/cbf.1432.
    1. Rodrigues H. G., Vinolo M. A. R., Magdalon J., et al. Oral administration of oleic or linoleic acid accelerates the inflammatory phase of wound healing. Journal of Investigative Dermatology. 2012;132(1):208–215. doi: 10.1038/jid.2011.265.
    1. Gealekman O., Burkart A., Chouinard M., Nicoloro S. M., Straubhaar J., Corvera S. Enhanced angiogenesis in obesity and in response to PPARγ activators through adipocyte VEGF and ANGPTL4 production. American Journal of Physiology-Endocrinology and Metabolism. 2008;295(5):E1056–E1064. doi: 10.1152/ajpendo.90345.2008.
    1. Mayadas T. N., Cullere X., Lowell C. A. The multifaceted functions of neutrophils. Annual Review of Pathology. 2014;9(1):181–218. doi: 10.1146/annurev-pathol-020712-164023.
    1. Rodrigues H. G., Vinolo M. A. R., Magdalon J., et al. Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. Lipids. 2010;45(9):809–819. doi: 10.1007/s11745-010-3461-9.
    1. Hatanaka E., Levada-Pires A. C., Pithon-Curi T. C., Curi R. Systematic study on ROS production induced by oleic, linoleic, and γ-linolenic acids in human and rat neutrophils. Free Radical Biology and Medicine. 2006;41(7):1124–1132. doi: 10.1016/j.freeradbiomed.2006.06.014.
    1. Schafer M., Werner S. Oxidative stress in normal and impaired wound repair. Pharmacological Research. 2008;58(2):165–171. doi: 10.1016/j.phrs.2008.06.004.
    1. Roy S., Khanna S., Nallu K., Hunt T. K., Sen C. K. Dermal wound healing is subject to redox control. Molecular Therapy. 2006;13(1):211–220. doi: 10.1016/j.ymthe.2005.07.684.
    1. Morgan M. J., Liu Z.-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research. 2011;21(1):103–115. doi: 10.1038/cr.2010.178.
    1. Tobar N., Cáceres M., Santibáñez J. F., Smith P. C., Martínez J. RAC1 activity and intracellular ROS modulate the migratory potential of MCF-7 cells through a NADPH oxidase and NF-κB-dependent mechanism. Cancer Letters. 2008;267(1):125–132. doi: 10.1016/j.canlet.2008.03.011.
    1. Han D., Ybanez M. D., Ahmadi S., Yeh K., Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxidants & Redox Signaling. 2009;11(9):2245–2263. doi: 10.1089/ars.2009.2611.
    1. Magdalon J., Vinolo M. A. R., Rodrigues H. G., et al. Oral administration of oleic or linoleic acids modulates the production of inflammatory mediators by rat macrophages. Lipids. 2012;47(8):803–812. doi: 10.1007/s11745-012-3687-9.
    1. Frieder J., Kivelevitch D., Fiore C. T., Saad S., Menter A. The impact of biologic agents on health-related quality of life outcomes in patients with psoriasis. Expert Review of Clinical Immunology. 2017;14(1):1–19. doi: 10.1080/1744666X.2018.1401468.
    1. Serhan C. N. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Molecular Aspects of Medicine. 2017;58:1–11. doi: 10.1016/j.mam.2017.03.001.
    1. Pastar I., Stojadinovic O., Yin N. C., et al. Epithelialization in wound healing: a comprehensive review. Advances in Wound Care. 2014;3(7):445–464. doi: 10.1089/wound.2013.0473.
    1. Liu S., Shi-wen X., Kennedy L., et al. FAK is required for TGFβ-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix-remodeling phenotype. Molecular Biology of the Cell. 2007;18(6):2169–2178. doi: 10.1091/mbc.E06-12-1121.
    1. Vinolo M. A. R., Hirabara S. M., Curi R. G-protein-coupled receptors as fat sensors. Current Opinion in Clinical Nutrition and Metabolic Care. 2012;15(2):112–116. doi: 10.1097/MCO.0b013e32834f4598.
    1. Briscoe C. P., Tadayyon M., Andrews J. L., et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. Journal of Biological Chemistry. 2003;278(13):11303–11311. doi: 10.1074/jbc.M211495200.
    1. Sartorius T., Drescher A., Panse M., et al. Mice lacking free fatty acid receptor 1 (GPR40/FFAR1) are protected against conjugated linoleic acid-induced fatty liver but develop inflammation and insulin resistance in the brain. Cellular Physiology and Biochemistry. 2015;35(6):2272–2284. doi: 10.1159/000374031.
    1. Fujita T., Matsuoka T., Honda T., Kabashima K., Hirata T., Narumiya S. A GPR40 agonist GW9508 suppresses CCL5, CCL17, and CXCL10 induction in keratinocytes and attenuates cutaneous immune inflammation. Journal of Investigative Dermatology. 2011;131(8):1660–1667. doi: 10.1038/jid.2011.123.
    1. Parodi P. W. Conjugated linoleic acid: the early years. In: Yuramecz M. P., Mossoba M. M., Kramer J. K. G., Pariza M. W., Nelson G. J., editors. Advances in Conjugated Linoleic Acid Research Volume I. Champaing, IL: AOCS Press; 1999. pp. 1–11.
    1. Cooper M. H., Miller J. R., Mitchell P. L., Currie D. L., McLeod R. S. Conjugated linoleic acid isomers have no effect on atherosclerosis and adverse effects on lipoprotein and liver lipid metabolism in apoE−/− mice fed a high-cholesterol diet. Atherosclerosis. 2008;200(2):294–302. doi: 10.1016/j.atherosclerosis.2007.12.040.
    1. Bhattacharya A., Banu J., Rahman M., Causey J., Fernandes G. Biological effects of conjugated linoleic acids in health and disease. The Journal of Nutritional Biochemistry. 2006;17(12):789–810. doi: 10.1016/j.jnutbio.2006.02.009.
    1. Kim Y., Kim J., Whang K. Y., Park Y. Impact of conjugated linoleic acid (CLA) on skeletal muscle metabolism. Lipids. 2016;51(2):159–178. doi: 10.1007/s11745-015-4115-8.
    1. Wall R., Ross R. P., Fitzgerald G. F., Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews. 2010;68(5):280–289. doi: 10.1111/j.1753-4887.2010.00287.x.
    1. Viladomiu M., Hontecillas R., Bassaganya-Riera J. Modulation of inflammation and immunity by dietary conjugated linoleic acid. European Journal of Pharmacology. 2016;785:87–95. doi: 10.1016/j.ejphar.2015.03.095.
    1. Roy A., Chardigny J. M., Bauchart D., et al. Butters rich either in trans-10-C18:1 or in trans-11-C18:1 plus cis-9, trans-11 CLA differentially affect plasma lipids and aortic fatty streak in experimental atherosclerosis in rabbits. Animal. 2007;1(3):467–476. doi: 10.1017/S175173110770530X.
    1. Oleszczuk J., Oleszczuk L., Siwicki A. K., Skopińska-Skopińska E. Biological effects of conjugated linoleic acids supplementation. Polish Journal of Veterinary Sciences. 2012;15(2):403–408.
    1. Park N. Y., Valacchi G., Lim Y. Effect of dietary conjugated linoleic acid supplementation on early inflammatory responses during cutaneous wound healing. Mediators of Inflammation. 2010;2010:8. doi: 10.1155/2010/342328.342328
    1. Zhang F., Zhong R., Li S., et al. Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Frontiers in Aging Neuroscience. 2017;9:p. 282. doi: 10.3389/fnagi.2017.00282.
    1. Hwang D.-M., Kundu J. K., Shin J.-W., Lee J.-C., Lee H. J., Surh Y.-J. cis-9, trans-11-conjugated linoleic acid down-regulates phorbol ester-induced NF-κB activation and subsequent COX-2 expression in hairless mouse skin by targeting IκB kinase and PI3K-Akt. Carcinogenesis. 2006;28(2):363–371. doi: 10.1093/carcin/bgl151.
    1. Hwang T. L., Su Y. C., Chang H. L., et al. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. Journal of Lipid Research. 2009;50(7):1395–1408. doi: 10.1194/jlr.M800574-JLR200.
    1. Perdomo M. C., Santos J. E., Badinga L. trans-10, cis-12 conjugated linoleic acid and the PPAR-γ agonist rosiglitazone attenuate lipopolysaccharide-induced TNF-α production by bovine immune cells. Domestic Animal Endocrinology. 2011;41(3):118–125. doi: 10.1016/j.domaniend.2011.05.005.
    1. Cho M. H., Kang J. H., Yang M. P. Immunoenhancing effect of trans-10, cis-12 conjugated linoleic acid on the phagocytic capacity and oxidative burst activity of canine peripheral blood phagocytes. Research in Veterinary Science. 2008;85(2):269–278. doi: 10.1016/j.rvsc.2007.12.005.
    1. Lee J., Lee H., Kang S. B., Park W. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients. 2016;8(1) doi: 10.3390/nu8010023.
    1. Dawczynski C., Hackermeier U., Viehweger M., Stange R., Springer M., Jahreis G. Incorporation of n-3 PUFA and γ-linolenic acid in blood lipids and red blood cell lipids together with their influence on disease activity in patients with chronic inflammatory arthritis - a randomized controlled human intervention trial. Lipids in Health and Disease. 2011;10(1):p. 130. doi: 10.1186/1476-511X-10-130.
    1. Taweechaisupapong S., Srisuk N., Nimitpornsuko C., Vattraphoudes T., Rattanayatikul C., Godfrey K. Evening primrose oil effects on osteoclasts during tooth movement. The Angle Orthodontist. 2005;75(3):356–361.
    1. Olendzki B. C., Leung K., Van Buskirk S., Reed G., Zurier R. B. Treatment of rheumatoid arthritis with marine and botanical oils: influence on serum lipids. Evidence-Based Complementary and Alternative Medicine. 2011;2011:9. doi: 10.1155/2011/827286.827286
    1. Vasiljevic D., Veselinovic M., Jovanovic M., et al. Evaluation of the effects of different supplementation on oxidative status in patients with rheumatoid arthritis. Clinical Rheumatology. 2016;35(8):1909–1915. doi: 10.1007/s10067-016-3168-2.
    1. Foster R. H., Hardy G., Alany R. G. Borage oil in the treatment of atopic dermatitis. Nutrition. 2010;26(7-8):708–718. doi: 10.1016/j.nut.2009.10.014.
    1. Jung J. Y., Kwon H. H., Hong J. S., et al. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial. Acta Dermato Venereologica. 2014;94(5):521–5. doi: 10.2340/00015555-1802.
    1. Simon D., Eng P. A., Borelli S., et al. Gamma-linolenic acid levels correlate with clinical efficacy of evening primrose oil in patients with atopic dermatitis. Advances in Therapy. 2014;31(2):180–188. doi: 10.1007/s12325-014-0093-0.
    1. Chang C. S., Sun H. L., Lii C. K., Chen H. W., Chen P. Y., Liu K. L. Gamma-linolenic acid inhibits inflammatory responses by regulating NF-κB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation. 2010;33(1):46–57. doi: 10.1007/s10753-009-9157-8.
    1. Oh S. Y., Lee S. J., Jung Y. H., Lee H. J., Han H. J. Arachidonic acid promotes skin wound healing through induction of human MSC migration by MT3-MMP-mediated fibronectin degradation. Cell Death & Disease. 2015;6(5, article e1750) doi: 10.1038/cddis.2015.114.
    1. Tuncer S., Banerjee S. Eicosanoid pathway in colorectal cancer: recent updates. World Journal of Gastroenterology. 2015;21(41):11748–11766. doi: 10.3748/wjg.v21.i41.11748.
    1. Kendall A. C., Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Progress in Lipid Research. 2013;52(1):141–164. doi: 10.1016/j.plipres.2012.10.003.
    1. Sivamani R. K. Eicosanoids and keratinocytes in wound healing. Advances in Wound Care. 2014;3(7):476–481. doi: 10.1089/wound.2014.0523.
    1. Jacobi S. K., Moeser A. J., Corl B. A., Harrell R. J., Blikslager A. T., Odle J. Dietary long-chain PUFA enhance acute repair of ischemia-injured intestine of suckling pigs. The Journal of Nutrition. 2012;142(7):1266–1271. doi: 10.3945/jn.111.150995.
    1. Blikslager A. T., Moeser A. J., Gookin J. L., Jones S. L., Odle J. Restoration of barrier function in injured intestinal mucosa. Physiological Reviews. 2007;87(2):545–564. doi: 10.1152/physrev.00012.2006.
    1. Takeuchi K., Tanigami M., Amagase K., Ochi A., Okuda S., Hatazawa R. Endogenous prostaglandin E2 accelerates healing of indomethacin-induced small intestinal lesions through upregulation of vascular endothelial growth factor expression by activation of EP4 receptors. Journal of Gastroenterology and Hepatology. 2010;25:S67–S74. doi: 10.1111/j.1440-1746.2010.06222.x.
    1. Naito Y., Ji X., Tachibana S., et al. Effects of arachidonic acid intake on inflammatory reactions in dextran sodium sulphate-induced colitis in rats. British Journal of Nutrition. 2015;114(5):734–745. doi: 10.1017/S000711451500224X.
    1. Dhall S., Wijesinghe D. S., Karim Z. A., et al. Arachidonic acid-derived signaling lipids and functions in impaired healing. Wound Repair and Regeneration. 2015;23(5):644–656. doi: 10.1111/wrr.12337.
    1. Panigrahy D., Kalish B. T., Huang S., et al. Epoxyeicosanoids promote organ and tissue regeneration. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(33):13528–33. doi: 10.1073/pnas.1311565110.
    1. Rossen N. S., Hansen A. J., Selhuber-Unkel C., Oddershede L. B. Arachidonic acid randomizes endothelial cell motion and regulates adhesion and migration. PLoS One. 2011;6(9, article e25196) doi: 10.1371/journal.pone.0025196.
    1. Tomita T., Hosoda K., Fujikura J., Inagaki N., Nakao K. The G-protein-coupled long-chain fatty acid receptor GPR40 and glucose metabolism. Frontiers in Endocrinology. 2014;5:p. 152. doi: 10.3389/fendo.2014.00152.

Source: PubMed

3
購読する