Adding a single low-dose of primaquine (0.25 mg/kg) to artemether-lumefantrine did not compromise treatment outcome of uncomplicated Plasmodium falciparum malaria in Tanzania: a randomized, single-blinded clinical trial

Richard Mwaiswelo, Billy Ngasala, Irina Jovel, Berit Aydin-Schmidt, Roland Gosling, Zul Premji, Bruno Mmbando, Anders Björkman, Andreas Mårtensson, Richard Mwaiswelo, Billy Ngasala, Irina Jovel, Berit Aydin-Schmidt, Roland Gosling, Zul Premji, Bruno Mmbando, Anders Björkman, Andreas Mårtensson

Abstract

Background: The World Health Organization (WHO) recently recommended the addition of a single low-dose of the gametocytocidal drug primaquine (PQ) to artemisinin-based combination therapy (ACT) in low transmission settings as a component of pre-elimination or elimination programmes. However, it is unclear whether that influences the ACT cure rate. The study assessed treatment outcome of artemether-lumefantrine (AL) plus a single PQ dose (0.25 mg/kg) versus standard AL regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania.

Methods: A randomized, single-blinded, clinical trial was conducted in Yombo, Bagamoyo district, Tanzania. Acute uncomplicated P. falciparum malaria patients aged ≥1 year, with the exception of pregnant and lactating women, were enrolled and treated with AL plus a single PQ dose (0.25 mg/kg) or AL alone under supervision. PQ was administered together with the first AL dose. Clinical and laboratory assessments were performed at 0, 8, 24, 36, 48, 60, and 72 h and on days 7, 14, 21, and 28. The primary end-point was a polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) on day 28. Secondary outcomes included: fever and asexual parasitaemia clearance, proportion of patients with PCR-determined parasitaemia on day 3, and proportion of patients with Pfmdr1 N86Y and Pfcrt K76T on days 0, 3 and day of recurrent infection.

Results: Overall 220 patients were enrolled, 110 were allocated AL + PQ and AL, respectively. Parasite clearance by microscopy was fast, but PCR detectable parasitaemia on day 3 was 31/109 (28.4 %) and 29/108 (26.9 %) in patients treated with AL + PQ and AL, respectively (p = 0.79). Day 28 PCR-adjusted ACPR and re-infection rate was 105/105 (100 %) and 101/102 (99 %) (p = 0.31), and 5/107 (4.7 %) and 5/8 (4.8 %) (p = 0.95), in AL + PQ and AL arm, respectively. There was neither any statistically significant difference in the proportion of Pfmdr1 N86Y or Pfcrt K76T between treatment arms on days 0, 3 and day of recurrent infection, nor within treatment arms between days 0 and 3 or day 0 and day of recurrent infection.

Conclusion: The new WHO recommendation of adding a single low-dose of PQ to AL did not compromise treatment outcome of uncomplicated P. falciparum malaria in Tanzania. Trial registration number NCT02090036.

Keywords: Artemether-lumefantrine; Cure rate; Plasmodium falciparum malaria; Primaquine.

Figures

Fig. 1
Fig. 1
Flow of patients through the trial
Fig. 2
Fig. 2
Kaplan-Meier survival curve for cure rate of subjects treated with AL + PQ and AL
Fig. 3
Fig. 3
Microscopy-determined parasite clearance following treatment with AL + PQ and AL
Fig. 4
Fig. 4
Fever clearance following treatment with AL + PQ and AL

References

    1. WHO. World Malaria Report 2010. Geneva, World Health Organization, 2010.
    1. WHO. Evidence Review Group: The safety and effectiveness of single dose primaquine as a P. falciparum gametocytocide. Geneva, World Health Organization, 2012.
    1. WHO. Guidelines for the treatment of malaria. 3rd ed. Geneva, World Health Organization, 2015.
    1. Barnes KI, Lindegardh N, Ogundahunsi O, Olliaro P, Plowe CV, Randrianarivelojosia M, et al. World Antimalarial Resistance Network (WARN) IV: clinical pharmacology. Malar J. 2007;6:122. doi: 10.1186/1475-2875-6-122.
    1. Dooley KE, Flexner C, Andrade AS. Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis. 2008;198:1–14. doi: 10.1086/591459.
    1. Eziefula AC, Gosling R, Hwang J, Hsiang MS, Bousema T, von Seidlein L, et al. Rationale for short course primaquine in Africa to interrupt malaria transmission. Malar J. 2012;11:360. doi: 10.1186/1475-2875-11-360.
    1. Mnzava AEP, Kilama WL. Observations on the ecological distribution of Anopheles gambiae complex in Tanzania. Acta Trop. 1986;43:277–282.
    1. Temu EA, Minjas JN, Coetzee M, Hunt RH, Shiff CJ. The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Trans R Soc Trop Med Hyg. 1998;92:152–158. doi: 10.1016/S0035-9203(98)90724-6.
    1. Kabula B, Derua Y, Tungu P, Massue DJ, Sambu E, Stanley G, et al. Malaria entomological profile in Tanzania from 1950 to 2010: A review of mosquito distribution, vectorial capacity and insecticide resistance. Tanzan J Health Res. 2011;13:1–14. doi: 10.4314/thrb.v13i3.66915.
    1. NMCP. National malaria stratergic plan 2014–2020. National Malaria Control Prograamme. Ministry of Health and Social Welfare. The United Republic of Tanzania. (2014). Accessed 20 Feb 2016.
    1. Mwaiswelo R, Ngasala BE, Jovel I, Gosling R, Premji Z, Poirot E, et al. Safety of a single low-dose of primaquine in addition to standard artemether-lumefantrine regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania. Malar J. 2016;15:316. doi: 10.1186/s12936-016-1341-3.
    1. WHO. Methods for surveillance of antimalarial drug efficacy. Geneva, World Health Organization, 2009.
    1. Urbaniak GC, Plous S. Research Randomizer (version 4.0) (Computer software). (2013). Accessed 22 June 2013.
    1. NMCP. Tanzania Malaria Programme Review 2010. Programme Review Proposal. National Malaria Control Programme. Ministry of Health and Social Welfare. Dar es Salaam, Tanzania. . Accessed 12 Jan 2016.
    1. Eziefula AC, Bousema T, Yeung S, Kamya M, Owaraganise A, Gabagaya G, et al. Single dose primaquine for clearance of Plasmodium falciparum gametocytes in children with uncomplicated malaria in Uganda: a randomised, controlled, double-blind, dose-ranging trial. Lancet Infect Dis. 2014;14:130–139. doi: 10.1016/S1473-3099(13)70268-8.
    1. Hsiang MS, Lin M, Dokomajilar C, Kemere J, Pilcher CD, Dorsey G, Greenhouse B. PCR-based pooling of dried blood spots for detection of malaria parasites: optimization and application to a cohort. J Clin Microbiol. 2010;48:3539–3543. doi: 10.1128/JCM.00522-10.
    1. Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown K, et al. Biased distribution of mspl populations in Thailand and msp2 allelic variants in Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1999;2:369–374. doi: 10.1016/S0035-9203(99)90120-7.
    1. Djimdé A, Doumba O, Cortese J, Kayentao K, Doumbo S, Diourte Y, et al. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001;344:257–263. doi: 10.1056/NEJM200101253440403.
    1. Ngasala BE, Malmberg M, Carlsson AM, Ferreira PE, Petzold MG, Blessborn D, et al. Efficacy and effectiveness of artemether-lumefantrine after initial and repeated treatment in children <5 years of age with acute uncomplicated Plasmodium falciparum malaria in rural Tanzania: a randomized trial. Clin Infect Dis. 2011;52:873–882. doi: 10.1093/cid/cir066.
    1. Kamugisha E, Jing S, Minde M, Kataraihya J, Kongola G, Kironde F, et al. Efficacy of artemether-lumefantrine in treatment of malaria among under-fives and prevalence of drug resistance markers in Igombe-Mwanza. Malar J. 2012;11:58. doi: 10.1186/1475-2875-11-58.
    1. Shayo A, Mandara CI, Shahada F, Buza J, Lemnge MM, Ishengoma DS. Therapeutic efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in North-Eastern Tanzania. Malar J. 2014;13:376. doi: 10.1186/1475-2875-13-376.
    1. Shekalaghe S, Drakeley C, Gosling R, Ndaro A, van Meegeren M, Enevold A, et al. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoS One. 2007;2:1023. doi: 10.1371/journal.pone.0001023.
    1. Malmberg M, Ferreira PE, Tarning J, Ursing J, Ngasala B, Björkman A, et al. Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and its association with pfmdr1 polymorphisms. J Infect Dis. 2013;207:842–847. doi: 10.1093/infdis/jis747.
    1. Sisowath C, Stromberg J, Martensson A, Msellem M, Obondo C, Bjorkman A, et al. In vivo selection of Plasmodium falciparum pfmdr1 86 N coding alleles by artemether-lumefantrine (Coartem) J Infect Dis. 2005;191:1–4. doi: 10.1086/427997.
    1. Sisowath C, Petersen I, Veiga MI, Mårtensson A, Premji Z, Björkman A, et al. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J Infect Dis. 2009;199:750–757. doi: 10.1086/596738.
    1. Henriques G, Hallett RL, Beshir KB, Gadalla NB, Johnson RE, Burrow R, et al. Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT. J Infect Dis. 2014;210:2001–2008. doi: 10.1093/infdis/jiu358.
    1. Malmberg M, Ngasala B, Ferreira PE, Larsson E, Jovel I, Hjalmarsson A, et al. Temporal trends of molecular markers associated with artemether-lumefantrine tolerance/resistance in Bagamoyo district, Tanzania. Malar J. 2013;12:103. doi: 10.1186/1475-2875-12-103.

Source: PubMed

3
購読する