Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain

Sandra Alcaraz-Clariana, Lourdes García-Luque, Juan Luis Garrido-Castro, Cristina Carmona-Pérez, Daiana Priscila Rodrigues-de-Souza, César Fernández-de-Las-Peñas, Francisco Alburquerque-Sendín, Sandra Alcaraz-Clariana, Lourdes García-Luque, Juan Luis Garrido-Castro, Cristina Carmona-Pérez, Daiana Priscila Rodrigues-de-Souza, César Fernández-de-Las-Peñas, Francisco Alburquerque-Sendín

Abstract

This research aimed to identify changes in muscle mechanical properties (MMPs) when a standardized sequence of movements is performed and to determine the influence of acute low back pain (LBP) and age on the MMPs. Socio-demographic, clinical variables and MMPs were collected in 33 patients with LBP and 33 healthy controls. A 2 × 2 × 2 (group × age × time) analysis of variance (ANOVA) mixed model was used to determine the effect of the study factors on the different MMPs. There were no significant triple interactions. After the movements, tone and stiffness increased 0.37 Hz and 22.75 N/m, respectively, in subjects <35 years, independent of their clinical status. Relaxation showed differences by age in healthy subjects and creep in LBP subjects. Furthermore, elasticity was higher in <35 years (p < 0.001) without the influence of any other factor. In conclusion, sequenced movements can modify tone and stiffness as a function of age, while age-associated changes in viscoelastic characteristics depends on pain but not on movements. The MMPs should be assessed, not only at the beginning of the physical examination at rest, but also along the patient's follow-up, depending on their pain and age, in a clinical setting.

Keywords: myotonometry; spinal pain; thixotropy; viscoelasticity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Procedure for measuring MMPs at lumbar level with MyotonPRO©.

References

    1. Ganesan S., Acharya A.S., Chauhan R., Acharya S. Prevalence and risk factors for low back pain in 1,355 young adults: A cross-sectional study. Asian Spine J. 2017;11:610–617. doi: 10.4184/asj.2017.11.4.610.
    1. Vos T., Allen C., Arora M., Barber R.M., Brown A., Carter A., Casey D.C., Charlson F.J., Chen A.Z., Coggeshall M., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–1602. doi: 10.1016/S0140-6736(16)31678-6.
    1. Palacios-Ceña D., Alonso-Blanco C., Hernández-Barrera V., Carrasco-Garrido P., Jiménez-García R., Fernández-de-las-Peñas C. Prevalence of neck and low back pain in community-dwelling adults in Spain: An updated population-based national study (2009/10–2011/12) Eur. Spine J. 2015;24:482–492. doi: 10.1007/s00586-014-3567-5.
    1. Manchikanti L., Singh V., Falco F.J.E., Benyamin R.M., Hirsch J.A. Epidemiology of low back pain in Adults. Neuromodulation. 2014;17:3–10. doi: 10.1111/ner.12018.
    1. O’Sullivan P. Diagnosis and classification of chronic low back pain disorders: Maladaptive movement and motor control impairments as underlying mechanism. Man. Ther. 2005;10:242–255. doi: 10.1016/j.math.2005.07.001.
    1. Koch C., Hänsel F. Non-specific low back pain and postural control during quiet standing-A systematic review. Front. Psychol. 2019;10:586. doi: 10.3389/fpsyg.2019.00586.
    1. Hodges P.W., Tucker K. Moving differently in pain: A new theory to explain the adaptation to pain. Pain. 2011;152:90–98. doi: 10.1016/j.pain.2010.10.020.
    1. Hodges P.W., Danneels L. Changes in structure and function of the back muscles in low back pain: Different time points, observations, and mechanisms. J. Orthop. Sports Phys. Ther. 2019;49:464–476. doi: 10.2519/jospt.2019.8827.
    1. Hamilton R.I., Garden C.L.P., Brown S.J. Immediate effect of a spinal mobilisation intervention on muscle stiffness, tone and elasticity in subjects with lower back pain—A randomized cross-over trial. J. Bodyw. Mov. Ther. 2021 doi: 10.1016/j.jbmt.2021.09.032.
    1. Haines T. Cost-effectiveness of using a motion-sensor biofeedback treatment approach for the management of sub-acute or chronic low back pain: Economic evaluation alongside a randomised trial. BMC Musculoskelet. Disord. 2017;18:1–11. doi: 10.1186/s12891-016-1371-6.
    1. Nair K., Masi A.T., Andonian B.J., Barry A.J., Coates B.A., Dougherty J., Schaefer E., Henderson J., Kelly J. Stiffness of resting lumbar myofascia in healthy young subjects quantified using a handheld myotonometer and concurrently with surface electromyography monitoring. J. Bodyw. Mov. Ther. 2016;20:388–396. doi: 10.1016/j.jbmt.2015.12.005.
    1. Creze M., Bedretdinova D., Soubeyrand M., Rocher L., Gennisson J.L., Gagey O., Maître X., Bellin M.F. Posture-related stiffness mapping of paraspinal muscles. J. Anat. 2019;234:787–799. doi: 10.1111/joa.12978.
    1. Lo W.L.A., Yu Q., Mao Y., Li W., Hu C., Li L. Lumbar muscles biomechanical characteristics in young people with chronic spinal pain. BMC Musculoskelet. Disord. 2019;20:1–9. doi: 10.1186/s12891-019-2935-z.
    1. Alcaraz-Clariana S., García-Luque L., Garrido-Castro J.L., Valera I.C.A., Ladehesa-Pineda L., Puche-Larrubia M.A., Carmona-Pérez C., Rodrigues-de-Souza D.P., Alburquerque-Sendín F. Paravertebral Muscle Mechanical Properties in Patients with Axial Spondyloarthritis or Low Back Pain: A Case-Control Study. Diagnostics. 2021;11:1898. doi: 10.3390/diagnostics11101898.
    1. Shum G.L., Tsung B.Y., Lee R.Y. The immediate effect of posteroanterior mobilization on reducing back pain and the stiffness of the lumbar spine. Arch. Phys. Med. Rehabil. 2013;94:673–679. doi: 10.1016/j.apmr.2012.11.020.
    1. Herbert R.D., Gandevia S.C. The passive mechanical properties of muscle. J. Appl. Physiol. 2019;126:1442–1444. doi: 10.1152/japplphysiol.00966.2018.
    1. Masi A.T., Hannon J.C. Human resting muscle tone (HRMT): Narrative introduction and modern concepts. J. Bodyw. Mov. Ther. 2008;12:320–332. doi: 10.1016/j.jbmt.2008.05.007.
    1. Altman D., Minozzo F.C., Rassier D.E. Thixotropy and rheopexy of muscle fibers probed using sinusoidal oscillations. PLoS ONE. 2015;10:e0121726. doi: 10.1371/journal.pone.0121726.
    1. Lakie M., Campbell K.S. Muscle thixotropy—Where are we now? J. Appl. Physiol. 2019;126:1790–1799. doi: 10.1152/japplphysiol.00788.2018.
    1. Mewis J., Wagner N.J. Thixotropy. Adv. Colloid Interface Sci. 2009;147–148:214–227. doi: 10.1016/j.cis.2008.09.005.
    1. Axelson H.W., Hagbarth K.E. Human motor control consequences of thixotropic changes in muscular short-range stiffness. J. Physiol. 2001;535:279–288. doi: 10.1111/j.1469-7793.2001.00279.x.
    1. Bilston L.E., Bolsterlee B., Nordez A., Sinha S. Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo. J. Appl. Physiol. 2019;126:1454–1464. doi: 10.1152/japplphysiol.00672.2018.
    1. Kelly J.P., Koppenhaver S.L., Michener L.A., Proulx L., Bisagni F., Cleland J.A. Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. J. Electromyogr. Kinesiol. 2018;38:73–80. doi: 10.1016/j.jelekin.2017.11.001.
    1. Garrido-Castro J.L., Valera I.C.A., Amaro J.P., Galisteo A.M., Navas C.G., De Souza D.P.R., Clariana S.A., Luque L.G., Sánchez I.R.M., Medina C.L., et al. Mechanical Properties of Lumbar and Cervical Paravertebral Muscles in Patients with Axial Spondyloarthritis: A Case—Control Study. Diagnostics. 2021;11:1662. doi: 10.3390/diagnostics11091662.
    1. Hu X., Lei D., Li L., Leng Y., Yu Q., Wei X., Lo W.L.A. Quantifying paraspinal muscle tone and stiffness in young adults with chronic low back pain: A reliability study. Sci. Rep. 2018;8:14343. doi: 10.1038/s41598-018-32418-x.
    1. Lohr C., Braumann K.M., Reer R., Schroeder J., Schmidt T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur. J. Appl. Physiol. 2018;118:1349–1359. doi: 10.1007/s00421-018-3867-2.
    1. Rodrigues-de-Souza D.P., Alcaraz-Clariana S., García-Luque L., Carmona-Pérez C., Luis Garrido-Castro J., Cruz-Medel I., Camargo P.R., Alburquerque-Sendín F., Muñoz-Berbel X. Absolute and Relative Reliability of the Assessment of the Muscle Mechanical Properties of Pelvic Floor Muscles in Women with and without Urinary Incontinence. Diagnostics. 2021;11:2315. doi: 10.3390/diagnostics11122315.
    1. Schneebeli A., Falla D., Clijsen R., Barbero M. Myotonometry for the evaluation of Achilles tendon mechanical properties: A reliability and construct validity study. BMJ Open Sport Exerc. Med. 2020;6:e000726. doi: 10.1136/bmjsem-2019-000726.
    1. Zinder S.M., Padua D.A. Reliability, validity, and precision of a handheld myometer for assessing in vivo muscle stiffness. J. Sport Rehabil. 2011;20:2010_0051. doi: 10.1123/jsr.2010-0051.
    1. Garcia-Bernal M.I., Heredia-Rizo A.M., Gonzalez-Garcia P., Cortés-Vega M.D., Casuso-Holgado M.J. Validity and reliability of myotonometry for assessing muscle viscoelastic properties in patients with stroke: A systematic review and meta-analysis. Sci. Rep. 2021;11:1–12. doi: 10.1038/s41598-021-84656-1.
    1. Kocur P., Grzeskowiakb M., Wiernicka M., Goliwas M., Lewandowski J., Lochyriski D. Effects of aging on mechanical properties of sternocleidomastoid and trapezius muscles during transition from lying to sitting position-A cross-sectional study. Arch. Gerontol. Geriatr. 2017;70:14–18. doi: 10.1016/j.archger.2016.12.005.
    1. Agyapong-badu S., Warner M., Samuel D., Stokes M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016;62:59–67. doi: 10.1016/j.archger.2015.09.011.
    1. Dietsch A.M., Heather C., Steiner J., Solomon N. Effects of Age, Sex, and Body Position on Orofacial Muscle Tone in Healthy Adults. J. Speech Lang. Hear. Res. 2015;58:1145–1150. doi: 10.1044/2015_JSLHR-S-14-0325.
    1. Kocur P., Wilski M., Goliwąs M., Lewandowski J., Łochyński D. Influence of Forward Head Posture on Myotonometric Measurements of Superficial Neck Muscle Tone, Elasticity, and Stiffness in Asymptomatic Individuals With Sedentary Jobs. J. Manip. Physiol. Ther. 2019;42:195–202. doi: 10.1016/j.jmpt.2019.02.005.
    1. Schoenrock B., Zander V., Dern S., Limper U., Mulder E., Veraksitš A., Viir R., Kramer A., Stokes M.J., Salanova M., et al. Bed rest, exercise countermeasure and reconditioning effects on the human resting muscle tone system. Front. Physiol. 2018;9:810. doi: 10.3389/fphys.2018.00810.
    1. Ilahi S., Masi A.T., White A., Devos A., Henderson J., Nair K. Quantified biomechanical properties of lower lumbar myofascia in younger adults with chronic idiopathic low back pain and matched healthy controls. Clin. Biomech. 2020;73:78–85. doi: 10.1016/j.clinbiomech.2019.12.026.
    1. Qaseem A., Wilt T.J., McLean R.M., Forciea M.A. Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2017;166:514–530. doi: 10.7326/M16-2367.
    1. Abbott J.H., Schmitt J. Minimum important differences for the patient-specific functional scale, 4 region-specific outcome measures, and the numeric pain rating scale. J. Orthop. Sports Phys. Ther. 2014;44:560–564. doi: 10.2519/jospt.2014.5248.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates; Hillsdale, NJ, USA: 1988. The concepts of power analysis; pp. 1–17.
    1. Armijo-Olivo S., Warren S., Fuentes J., Magee D.J. Clinical relevance vs. statistical significance: Using neck outcomes in patients with temporomandibular disorders as an example. Man. Ther. 2011;16:563–572. doi: 10.1016/j.math.2011.05.006.
    1. Selva-Sevilla C., Ferrara P., Geronimo-Pardo M. Psychometric properties study of the Oswestry disability index in a Spanish population with previous lumbar disc surgery: Homogeneity and validity. Spine. 2019;44:430–437. doi: 10.1097/BRS.0000000000002867.
    1. Technology–Myoton. [(accessed on 2 December 2021)]. Available online:
    1. White A., Abbott H., Masi A.T., Henderson J., Nair K. Biomechanical properties of low back myofascial tissue in younger adult ankylosing spondylitis patients and matched healthy control subjects. Clin. Biomech. 2018;57:67–73. doi: 10.1016/j.clinbiomech.2018.06.006.
    1. Alcaraz-Clariana S., García-Luque L., Garrido-Castro J.L., Fernández-de-las-Peñas C., Carmona-Pérez C., Rodrigues-de-Souza D.P., Alburquerque-Sendín F. Paravertebral Muscle Mechanical Properties and Spinal Range of Motion in Patients with Acute Neck or Low Back Pain: A Case-Control Study. Diagnostics. 2021;11:352. doi: 10.3390/diagnostics11020352.
    1. Sieper J., van der Heijde D., Landewé R., Brandt J., Burgos-Vagas R., Collantes-Estevez E., Dijkmans B., Dougados M., Khan M.A., Leirisalo-Repo M., et al. New criteria for inflammatory back pain in patients with chronic back pain: A real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS) Ann. Rheum. Dis. 2009;68:784–788. doi: 10.1136/ard.2008.101501.
    1. Mousavi-Khatir R., Talebian S., Toosizadeh N., Olyaei G.R., Maroufi N. The effect of static neck flexion on mechanical and neuromuscular behaviors of the cervical spine. J. Biomech. 2018;72:152–158. doi: 10.1016/j.jbiomech.2018.03.004.
    1. Mooney K., Warner M., Stokes M. Symmetry and within-session reliability of mechanical properties of biceps brachii muscles in healthy young adult males using the MyotonPRO device. Work. Pap. Health Sci. 2013;1:1–11.
    1. Romero D.E., Santana D., Borges P., Marques A., Castanheira D., Rodrigues J.M., Sabbadini L. Prevalence, associated factors, and limitations related to chronic back problems in adults and elderly in Brazil. Cad. Saude Publica. 2018;34:e00012817. doi: 10.1590/0102-311X00012817.
    1. Solomonow M. Neuromuscular manifestations of viscoelastic tissue degradation following high and low risk repetitive lumbar flexion. J. Electromyogr. Kinesiol. 2012;22:155–175. doi: 10.1016/j.jelekin.2011.11.008.
    1. Masaki M., Aoyama T., Murakami T., Yanase K., Ji X., Tateuchi H., Ichihashi N. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers. Clin. Biomech. 2017;49:128–133. doi: 10.1016/j.clinbiomech.2017.09.008.
    1. Lakie M., Robson L.G. Thixotropic Changes in Human Muscle Stiffness and the Effects of Fatigue. Q. J. Exp. Physiol. 1988;73:809. doi: 10.1113/expphysiol.1988.sp003208.
    1. Lindemann I., Coombes B.K., Tucker K., Hug F., Dick T.J.M. Age-related differences in gastrocnemii muscles and Achilles tendon mechanical properties in vivo. J. Biomech. 2020;112:110067. doi: 10.1016/j.jbiomech.2020.110067.
    1. Murata Y., Nakamura E., Tsukamoto M., Nakagawa T., Takeda M., Kozuma M., Kadomura T., Narusawa K., Shimizu K., Uchida S., et al. Longitudinal study of risk factors for decreased cross-sectional area of psoas major and paraspinal muscle in 1849 individuals. Sci. Rep. 2021;11:16986. doi: 10.1038/s41598-021-96448-8.
    1. Lexell J., Taylor C.C., Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988;84:275–294. doi: 10.1016/0022-510X(88)90132-3.
    1. Rahemi H., Nigam N., Wakeling J.M. The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese. J. R. Soc. Interface. 2015;12:20150365. doi: 10.1098/rsif.2015.0365.
    1. Csapo R., Malis V., Hodgson J., Sinha S. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women. J. Appl. Physiol. 2014;116:961–969. doi: 10.1152/japplphysiol.01337.2013.
    1. Stenroth L., Peltonen J., Cronin N.J., Sipilä S., Finni T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J. Appl. Physiol. 2012;113:1537–1544. doi: 10.1152/japplphysiol.00782.2012.
    1. Andonian B.J., Masi A.T., Aldag J.C., Barry A.J., Coates B.A., Emrich K., Henderson J., Kelly J., Nair K. Greater Resting Lumbar Extensor Myofascial Stiffness in Younger Ankylosing Spondylitis Patients Than Age-Comparable Healthy Volunteers Quantified by Myotonometry. Arch. Phys. Med. Rehabil. 2015;96:2041–2047. doi: 10.1016/j.apmr.2015.07.014.
    1. Wu Z., Zhu Y., Xu W., Liang J., Guan Y., Xu X. Analysis of Biomechanical Properties of the Lumbar Extensor Myofascia in Elderly Patients with Chronic Low Back Pain and That in Healthy People. BioMed Res. Int. 2020;2020:7649157. doi: 10.1155/2020/7649157.
    1. Chang T.T., Li Z., Wang X.Q., Zhang Z.J. Stiffness of the Gastrocnemius–Achilles Tendon Complex Between Amateur Basketball Players and the Non-athletic General Population. Front. Physiol. 2020;11:606706. doi: 10.3389/fphys.2020.606706.
    1. Janecki D., Jarocka E., Jaskólska A., Marusiak J., Jaskólski A. Muscle passive stiffness increases less after the second bout of eccentric exercise compared to the first bout. J. Sci. Med. Sport. 2011;14:338–343. doi: 10.1016/j.jsams.2011.02.005.
    1. Uysal Ö., Delioğlu K., Firat T. The effects of hamstring training methods on muscle viscoelastic properties in healthy young individuals. Scand. J. Med. Sci. Sport. 2021;31:371–379. doi: 10.1111/sms.13856.

Source: PubMed

3
購読する