Effects of Age and Sex on Properties of Lumbar Erector Spinae in Healthy People: Preliminary Results From a Pilot Study

Zugui Wu, Yi Wang, Zixuan Ye, Yingxing Guan, Xiangling Ye, Zehua Chen, Congcong Li, Guoqian Chen, Yue Zhu, Jianping Du, Guocai Chen, Wengang Liu, Xuemeng Xu, Zugui Wu, Yi Wang, Zixuan Ye, Yingxing Guan, Xiangling Ye, Zehua Chen, Congcong Li, Guoqian Chen, Yue Zhu, Jianping Du, Guocai Chen, Wengang Liu, Xuemeng Xu

Abstract

Background: The influences of age and sex on properties of lumbar erector spinae have not been previously studied. Changes in the performance of lumbar erector spinae properties associated with age represent a valuable indicator of risk for lower-back-related disease. Objective: To investigate the lumbar erector spinae properties with regard to age and sex to provide a reference dataset. Methods: We measured muscle tone and stiffness of the lumbar erector spinae (at the L3-4 level) in healthy men and women (50 young people, aged 20-30 years; 50 middle-aged people, aged 40-50 years; and 50 elderly people, aged 65-75 years) using a MyotonPRO device. Results: In general, there are significant differences in muscle tone and stiffness among young, middle-aged, and elderly participants, and there were significant differences in muscle tone and stiffness between men and women, and there was no interaction between age and sex. The muscle tone and stiffness of the elderly participants were significantly higher than those of the middle-aged and young participants (P < 0.01), and the muscle tone and stiffness of the middle-aged participants were significantly higher than those of the young participants (P < 0.01). In addition, the muscle tone and stiffness of men participants were significantly higher than that of women participants (P < 0.01). Conclusion: Our results indicate that muscle tone and stiffness of the lumbar erector spinae increase with age. The muscle tone and stiffness of the lumbar erector spinae in men are significantly higher than in women. The present study highlights the importance of considering age and sex differences when assessing muscle characteristics of healthy people or patients.

Keywords: age; lumbar erector spinae; muscle tone; properties; sex; stiffness.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wu, Wang, Ye, Guan, Ye, Chen, Li, Chen, Zhu, Du, Chen, Liu and Xu.

Figures

FIGURE 1
FIGURE 1
Measurement points and MyotonPRO probe contact measurement points.
FIGURE 2
FIGURE 2
Age and sex differences in muscle tone. #Indicates P value < 0.01; ∗Indicates P value < 0.05.
FIGURE 3
FIGURE 3
Age and sex differences in stiffness. #Indicates P value < 0.01; ∗Indicates P value < 0.05.

References

    1. Agyapong-Badu S., Warner M., Samuel D., Stokes M. (2016). Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 62 59–67. 10.1016/j.archger.2015.09.011
    1. Alnaqeeb M. A., Al Zaid N. S., Goldspink G. (1984). Connective tissue changes and physical properties of developing and ageing skeletal muscle. J. Anat. 139 677–689.
    1. Andonian B. J., Masi A. T., Aldag J. C., Barry A. J., Coates B. A., Emrich K., et al. (2015). Greater resting lumbar extensor myofascial stiffness in younger ankylosing spondylitis patients than age-comparable healthy volunteers quantified by myotonometry. Arch. Phys. Med. Rehabil. 96 2041–2047. 10.1016/j.apmr.2015.07.014
    1. Bailey L., Samuel D., Warner M., Stokes M. (2013). Parameters representing muscle tone, elasticity and stiffness of biceps brachii in healthy older males: symmetry and within-session reliability using the MyotonPRO. J. Neurol. Disord. 1:116. 10.9783/9780812208221.1
    1. Banks R. W. (2006). An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J. Anat. 208 753–768. 10.1111/j.1469-7580.2006.00558.x
    1. Barros E. M., Rodrigues C. J., Rodrigues N. R., Oliveira R. P., Barros T. E., Rodrigues A. J. (2002). Aging of the elastic and collagen fibers in the human cervical interspinous ligaments. Spine J. 2 57–62. 10.1016/s1529-9430(01)00167-x
    1. Baumgartner R. N., Waters D. L. (2006). Sarcopenia and Sarcopenic−Obesity. Hoboken: John Wiley & Sons.
    1. Bell D. R., Blackburn J. T., Norcross M. F., Ondrak K. S., Hudson J. D., Hackney A. C., et al. (2012). Estrogen and muscle stiffness have a negative relationship in females. Knee Surg. Sports Traumatol. Arthrosc. 20 361–367. 10.1007/s00167-011-1577-y
    1. Blanpied P., Smidt G. L. (1993). The difference in stiffness of the active plantarflexors between young and elderly human females. J. Gerontol. 48 M58–M63. 10.1093/geronj/48.2.m58
    1. Bohannon R. W., Smith M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 67 206–207. 10.1093/ptj/67.2.206
    1. Cruz-Jentoft A. J., Baeyens J. P., Bauer J. M., Boirie Y., Cederholm T., Landi F., et al. (2010). European working group on sarcopenia in older people. sarcopenia: european consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing 39 412–423. 10.1093/ageing/afq034
    1. Cvetko E., Karen P., Eržen I. (2012). Myosin heavy chain composition of the human sternocleidomastoid muscle. Ann. Anat. 194 467–472. 10.1016/j.aanat.2012.05.001
    1. Dresner M. A., Rose G. H., Rossman P. J., Muthupillai R., Manduca A., Ehman R. L. (2001). Magnetic resonance elastography of skeletal muscle. J. Magn. Reson. Imaging 13 269–276. 10.1002/1522-2586(200102)13:2
    1. Eby S. F., Cloud B. A., Brandenburg J. E., Giambini H., Song P., Chen S., et al. (2015). Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood. Clin. Biomech. 30 22–27. 10.1016/j.clinbiomech.2014.11.011
    1. Fleuren J. F., Voerman G. E., Erren-Wolters C. V., Snoek G. J., Rietman J. S., Hermens H. J., et al. (2010). Stop using the Ashworth Scale for the assessment of spasticity. J. Neurol. Neurosurg. Psychiatry 81 46–52. 10.1136/jnnp.2009.177071
    1. Fouré A., Cornu C., McNair P. J., Nordez A. (2012). Gender differences in both active and passive parts of the plantar flexors series elastic component stiffness and geometrical parameters of the muscle-tendon complex. J. Orthop. Res. 30 707–712. 10.1002/jor.21584
    1. Freburger J. K., Holmes G. M., Agans R. P., Jackman A. M., Darter J. D., Wallace A. S., et al. (2009). The rising prevalence of chronic low back pain. Arch. Intern. Med. 169 251–258. 10.1001/archinternmed.2008.543
    1. Fröhlich-Zwahlen A. K., Casartelli N. C., Item-Glatthorn J. F., Maffiuletti N. A. (2014). Validity of resting myotonometric assessment of lower extremity muscles in chronic stroke patients with limited hypertonia: a preliminary study. J. Electromyogr. Kinesiol. 24 762–769. 10.1016/j.jelekin.2014.06.007
    1. Gavronski G., Veraksits A., Vasar E., Maaroos J. (2007). Evaluation of viscoelastic parameters of the skeletal muscles in junior triathletes. Physiol. Meas. 28 625–637. 10.1088/0967-3334/28/6/002
    1. Gosselin L. E., Adams C., Cotter T. A., McCormick R. J., Thomas D. P. (1998). Effect of exercise training on passive stiffness in locomotor skeletal muscle: role of extracellular matrix. J. Appl. Physiol. 85 1011–1016. 10.1152/jappl.1998.85.3.1011
    1. Hamada T., Sale D. G., MacDougall J. D., Tarnopolsky M. A. (2003). Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol. Scand. 178 165–173. 10.1046/j.1365-201X.2003.01121.x
    1. Haus J. M., Carrithers J. A., Trappe S. W., Trappe T. A. (2007). Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J. Appl. Physiol. 103 2068–2076. 10.1152/japplphysiol.00670.2007
    1. Hides J. A., Richardson C. A., Jull G. A. (1996). Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine 21 2763–2769. 10.1097/00007632-199612010-00011
    1. Hu X., Lei D., Li L., Leng Y., Yu Q., Wei X., et al. (2018). Quantifying paraspinal muscle tone and stiffness in young adults with chronic low back pain: a reliability study. Sci. Rep. 8:14343. 10.1038/s41598-018-32418-x
    1. Junior A., Rodrigues C. J., Cunha A., Jin Y. (2002). Quantitative analysis of collagen and elastic fibers in the transversalis fascia in direct and indirect inguinal hernia. Rev. Hosp. Clin. Fac. Med. Sao. Paulo. 57 265–270. 10.1590/s0041-87812002000600004
    1. Kararizou E., Manta P., Kalfakis N., Vassilopoulos D. (2009). Age-related morphometric characteristics of human skeletal muscle in male subjects. Pol. J. Pathol. 60 186–188.
    1. Kocur P., Tomczak M., Wiernicka M., Goliwa̧s M., Lewandowski J., Łochyński D. (2019). Relationship between age, BMI, head posture and superficial neck muscle stiffness and elasticity in adult women. Sci. Rep. 9:8515. 10.1038/s41598-019-44837-5
    1. Kragstrup T. W., Kjaer M., Mackey A. L. (2011). Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand. J. Med. Sci. Sports 21 749–757. 10.1111/j.1600-0838.2011.01377.x
    1. Liu D., Sartor M. A., Nader G. A., Gutmann L., Treutelaar M. K., Pistilli E. E., et al. (2010). Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC Genomics 11:659. 10.1186/1471-2164-11-659
    1. Maher A. C., Fu M. H., Isfort R. J., Varbanov A. R., Qu X. A., Tarnopolsky M. A. (2009). Sex differences in global mRNA content of human skeletal muscle. PLoS One. 4:e6335. 10.1371/journal.pone.0006335
    1. Manta P., Kalfakis N., Kararizou E., Vassilopoulos D., Papageorgiou K. (1995). Distribution of muscle fibre types in human skeletal muscle fascicles: an autopsy study of three human muscles. Funct. Neurol. 10 137–141.
    1. Marusiak J., Kisiel-Sajewicz K., Jaskólska A., Jaskólski A. (2010). Higher muscle passive stiffness in Parkinson’s disease patients than in controls measured by myotonometry. Arch. Phys. Med. Rehabil. 91 800–802. 10.1016/j.apmr.2010.01.012
    1. Meznaric M., Eržen I., Karen P., Cvetko E. (2018). Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle. Ann. Anat. 216 95–99. 10.1016/j.aanat.2017.12.001
    1. Moore A. Z., Caturegli G., Metter E. J., Makrogiannis S., Resnick S. M., Harris T. B., et al. (2014). Difference in muscle quality over the adult life span and biological correlates in the Baltimore Longitudinal Study of Aging. J. Am. Geriatr. Soc. 62 230–236. 10.1111/jgs.12653
    1. Morgan G. E., Martin R., Williams L., Pearce O., Morris K. (2018). Objective assessment of stiffness in Achilles tendinopathy: a novel approach using the MyotonPRO. BMJ Open Sport Exerc. Med. 4:e000446. 10.1136/bmjsem-2018-000446
    1. Morse C. I. (2011). Gender differences in the passive stiffness of the human gastrocnemius muscle during stretch. Eur. J. Appl. Physiol. 111 2149–2154. 10.1007/s00421-011-1845-z
    1. Mullix J., Warner M., Stokes M. (2012). Testing muscle tone and mechanical properties of rectus femoris and biceps femoris using a novel hand held MyotonPRO device: relative ratios and reliability. Work. Pap. Health Sci. 1 1–8.
    1. Mutungi G., Ranatunga K. W. (1996). The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres. J. Physiol. 496 827–836. 10.1113/jphysiol.1996.sp021730
    1. Nair K., Masi A. T., Andonian B. J., Barry A. J., Coates B. A., Dougherty J., et al. (2016). Stiffness of resting lumbar myofascia in healthy young subjects quantified using a handheld myotonometer and concurrently with surface electromyography monitoring. J. Bodyw. Mov. Ther. 20 388–396. 10.1016/j.jbmt.2015.12.005
    1. Narici M. V., Landoni L., Minetti A. E. (1992). Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur. J. Appl. Physiol. Occup. Physiol. 65 438–444. 10.1007/BF00243511
    1. Narici M. V., Maffulli N. (2010). Sarcopenia: characteristics, mechanisms and functional significance. Br. Med. Bull. 95 139–159. 10.1093/bmb/ldq008
    1. Otsuka S., Yakura T., Ohmichi Y., Ohmichi M., Naito M., Nakano T., et al. (2018). Site specificity of mechanical and structural properties of human fascia lata and their gender differences: a cadaveric study. J. Biomech. 77 69–75. 10.1016/j.jbiomech.2018.06.018
    1. Porter M. M., Stuart S., Boij M., Lexell J. (2002). Capillary supply of the tibialis anterior muscle in young, healthy, and moderately active men and women. J. Appl. Physiol. 92 1451–1457. 10.1152/japplphysiol.00744.2001
    1. Proske U., Morgan D. L. (1999). Do cross-bridges contribute to the tension during stretch of passive muscle? J. Muscle Res. Cell Motil. 20 433–442. 10.1023/a:1005573625675
    1. Purslow P. P. (2002). The structure and functional significance of variations in the connective tissue within muscle. Comp. Biochem. Physiol. Mol. Integr. Physiol. 133 947–966. 10.1016/s1095-6433(02)00141-1
    1. Qiu W., Wang C., Yang X., Ming Q., Zheng H. (2015). A new shear wave imaging system for ultrasound elastography. Engineering in Medicine & Biology Society. Milan: IEEE. 3847–3850.
    1. Rodrigues C. J., Rodrigues Junior A. J. (2000). A comparative study of aging of the elastic fiber system of the diaphragm and the rectus abdominis muscles in rats. Braz. J. Med. Biol. Res. 33 1449–1454. 10.1590/s0100-879x2000001200008
    1. Roepstorff C., Thiele M., Hillig T., Pilegaard H., Richter E. A., Wojtaszewski J. F., et al. (2006). Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J. Physiol. 574 125–138. 10.1113/jphysiol.2006.108720
    1. Rosenberg I. H. (2011). Sarcopenia: origins and clinical relevance. Clin. Geriatr. Med. 27 337–339. 10.1016/j.cger.2011.03.003
    1. Scaglioni G., Narici M. V., Maffiuletti N. A., Pensini M., Martin A. (2003). Effect of ageing on the electrical and mechanical properties of human soleus motor units activated by the H reflex and M wave. J. Physiol. 548 649–661. 10.1111/j.1469-7793.2003.00649.x
    1. Schneider S., Peipsi A., Stokes M., Knicker A., Abeln V. (2015). Feasibility of monitoring muscle health in microgravity environments using Myoton technology. Med. Biol. Eng. Comput. 53 57–66. 10.1007/s11517-014-1211-5
    1. Schoenrock B., Zander V., Dern S., Limper U., Mulder E., Veraksitš A., et al. (2018). Bed rest, exercise countermeasure and reconditioning effects on the human resting muscle tone system. Front. Physiol. 9:810. 10.3389/fphys.2018.00810
    1. Sions J. M., Elliott J. M., Pohlig R. T., Hicks G. E. (2017). Trunk muscle characteristics of the multifidi, erector spinae, psoas, and quadratus lumborum in older adults with and without chronic low back pain. J. Orthop. Sports Phys. Ther. 47 173–179. 10.2519/jospt.2017.7002
    1. Staron R. S., Hagerman F. C., Hikida R. S., Murray T. F., Hostler D. P., Crill M. T., et al. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. J. Histochem. Cytochem. 48 623–629. 10.1177/002215540004800506
    1. Stubbs B., Koyanagi A., Thompson T., Veronese N., Carvalho A. F., Solomi M., et al. (2016). The epidemiology of back pain and its relationship with depression, psychosis, anxiety, sleep disturbances, and stress sensitivity: Data from 43 low- and middle-income countries. Gen. Hosp. Psychiatry 43 63–70. 10.1016/j.genhosppsych.2016.09.008
    1. Tardieu G., Shentoub S., Delarue R. (1954). [Research on a technic for measurement of spasticity]. Rev. Neurol. 91 143–144.
    1. Taş S., Salkin Y. (2019). An investigation of the sex-related differences in the stiffness of the Achilles tendon and gastrocnemius muscle: Inter-observer reliability and inter-day repeatability and the effect of ankle joint motion. Foot 41 44–50. 10.1016/j.foot.2019.09.003
    1. Trappe T. (2009). Influence of aging and long-term unloading on the structure and function of human skeletal muscle. Appl. Physiol. Nutr. Metab. 34 459–464. 10.1139/H09-041
    1. Uitto J. (1986). Connective tissue biochemistry of the aging dermis. Age-related alterations in collagen and elastin. Dermatol. Clin. 4 433–446. 10.1016/s0733-8635(18)30806-4
    1. Wang D., De Vito G., Ditroilo M., Delahunt E. (2017). Effect of sex and fatigue on muscle stiffness and musculoarticular stiffness of the knee joint in a young active population. J. Sports Sci. 35 1582–1591. 10.1080/02640414.2016.1225973
    1. Wang D., De Vito G., Ditroilo M., Fong D. T., Delahunt E. (2015). A comparison of muscle stiffness and musculoarticular stiffness of the knee joint in young athletic males and females. J. Electromyogr. Kinesiol. 25 495–500. 10.1016/j.jelekin.2015.03.003
    1. Welle S., Tawil R., Thornton C. A. (2008). Sex-related differences in gene expression in human skeletal muscle. PLoS One. 3:e1385. 10.1371/journal.pone.0001385
    1. White A., Abbott H., Masi A. T., Henderson J., Nair K. (2018). Biomechanical properties of low back myofascial tissue in younger adult ankylosing spondylitis patients and matched healthy control subjects. Clin. Biomech. 57 67–73. 10.1016/j.clinbiomech.2018.06.006
    1. Wüst R. C., Morse C. I., de Haan A., Jones D. A., Degens H. (2008). Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp. Physiol. 93 843–850. 10.1113/expphysiol.2007.041764
    1. Yam W. K., Leung M. S. (2006). Interrater reliability of modified ashworth scale and modified tardieu scale in children with spastic cerebral palsy. J. Child Neurol. 21 1031–1035. 10.1177/7010.2006.00222

Source: PubMed

3
購読する