Effect of Periodic Granulocyte Colony-Stimulating Factor Administration on Endothelial Progenitor Cells and Different Monocyte Subsets in Pediatric Patients with Muscular Dystrophies

Andrzej Eljaszewicz, Dorota Sienkiewicz, Kamil Grubczak, Bożena Okurowska-Zawada, Grażyna Paszko-Patej, Paula Miklasz, Paulina Singh, Urszula Radzikowska, Wojciech Kulak, Marcin Moniuszko, Andrzej Eljaszewicz, Dorota Sienkiewicz, Kamil Grubczak, Bożena Okurowska-Zawada, Grażyna Paszko-Patej, Paula Miklasz, Paulina Singh, Urszula Radzikowska, Wojciech Kulak, Marcin Moniuszko

Abstract

Muscular dystrophies (MD) are heterogeneous group of diseases characterized by progressive muscle dysfunction. There is a large body of evidence indicating that angiogenesis is impaired in muscles of MD patients. Therefore, induction of dystrophic muscle revascularization should become a novel approach aimed at diminishing the extent of myocyte damage. Recently, we and others demonstrated that administration of granulocyte colony-stimulating factor (G-CSF) resulted in clinical improvement of patients with neuromuscular disorders. To date, however, the exact mechanisms underlying these beneficial effects of G-CSF have not been fully understood. Here we used flow cytometry to quantitate numbers of CD34+ cells, endothelial progenitor cells, and different monocyte subsets in peripheral blood of pediatric MD patients treated with repetitive courses of G-CSF administration. We showed that repetitive cycles of G-CSF administration induced efficient mobilization of above-mentioned cells including cells with proangiogenic potential. These findings contribute to better understanding the beneficial clinical effects of G-CSF in pediatric MD patients.

Figures

Figure 1
Figure 1
The summary of analyses of changes in CD34+ cells numbers after (a) course 1, (b) course 2, and (c) course 3 of G-CSF administration in MD pediatric patients.
Figure 2
Figure 2
The summary of analyses of EPC numbers (expressing CD34+CD133+CD309+ phenotype) in MD pediatric individuals after (a) course 1, (b) course 2, and (c) course 3 of G-CSF administration.
Figure 3
Figure 3
Time course changes in Ang-1 (upper row) and Ang-2 (bottom row) plasma levels in pediatric patients with MD after (a) course 1, (b) course 2, and (c) course 3 of G-CSF administration.
Figure 4
Figure 4
Effect of (a) course 1, (b) course 2, and (c) course 3 of G-CSF administration on absolute numbers of CD14++CD16− (upper row), CD14++CD16+ (middle row), and CD14+CD16++ (bottom row) monocytes in pediatric patients with MD.
Figure 5
Figure 5
Time course changes in sCD163 plasma levels after (a) course 1, (b) course 2, and (c) course 3 of G-CSF administration in MD pediatric patients.

References

    1. Emery A. E. H. The muscular dystrophies. The Lancet. 2002;359(9307):687–695. doi: 10.1016/s0140-6736(02)07815-7.
    1. Mercuri E., Muntoni F. Muscular dystrophies. The Lancet. 2013;381(9869):845–860. doi: 10.1016/s0140-6736(12)61897-2.
    1. Meilleur K. G., Jain M. S., Hynan L. S., et al. Results of a two-year pilot study of clinical outcome measures in collagen VI- and laminin alpha2-related congenital muscular dystrophies. Neuromuscular Disorders. 2015;25(1):43–54. doi: 10.1016/j.nmd.2014.09.010.
    1. Kuhr C. S., Lupu M., Storb R. Hematopoietic cell transplantation directly into dystrophic muscle fails to reconstitute satellite cells and myofibers. Biology of Blood and Marrow Transplantation. 2007;13(8):886–888. doi: 10.1016/j.bbmt.2007.04.012.
    1. McGreevy J. W., Hakim C. H., McIntosh M. A., Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Disease Models & Mechanisms. 2015;8(3):195–213. doi: 10.1242/dmm.018424.
    1. Stilhano R. S., Martins L., Ingham S. J., Pesquero J. B., Huard J. Gene and cell therapy for muscle regeneration. Current Reviews in Musculoskeletal Medicine. 2015;8(2):182–187. doi: 10.1007/s12178-015-9268-9.
    1. Shimizu-Motohashi Y., Asakura A. Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Frontiers in Physiology. 2014;5, article 50 doi: 10.3389/fphys.2014.00050.
    1. Asahara T., Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. The American Journal of Physiology—Cell Physiology. 2004;287(3):C572–C579. doi: 10.1152/ajpcell.00330.2003.
    1. Brenman J. E., Chao D. S., Xia H., Aldape K., Bredt D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell. 1995;82(5):743–752. doi: 10.1016/0092-8674(95)90471-9.
    1. Sander M., Chavoshan B., Harris S. A., et al. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(25):13818–13823. doi: 10.1073/pnas.250379497.
    1. Loufrani L., Matrougui K., Gorny D., et al. Flow (shear stress)-induced endothelium-dependent dilation is altered in mice lacking the gene encoding for dystrophin. Circulation. 2001;103(6):864–870. doi: 10.1161/01.cir.103.6.864.
    1. Tedesco F. S., Dellavalle A., Diaz-Manera J., Messina G., Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. Journal of Clinical Investigation. 2010;120(1):11–19. doi: 10.1172/jci40373.
    1. Ennen J. P., Verma M., Asakura A. Vascular-targeted therapies for Duchenne muscular dystrophy. Skeletal Muscle. 2013;3, article 9 doi: 10.1186/2044-5040-3-9.
    1. Ferrara N., Gerber H.-P., LeCouter J. The biology of VEGF and its receptors. Nature Medicine. 2003;9(6):669–676. doi: 10.1038/nm0603-669.
    1. Burchardt M., Burchardt T., Anastasiadis A. G., et al. Application of angiogenic factors for therapy of erectile dysfunction: protein and DNA transfer of VEGF 165 into the rat penis. Urology. 2005;66(3):665–670. doi: 10.1016/j.urology.2005.03.058.
    1. Lederle W., Linde N., Heusel J., et al. Platelet-derived growth factor-B normalizes micromorphology and vessel function in vascular endothelial growth factor-A-induced squamous cell carcinomas. The American Journal of Pathology. 2010;176(2):981–994. doi: 10.2353/ajpath.2010.080998.
    1. Deng B., Wehling-Henricks M., Villalta S. A., Wang Y., Tidball J. G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. Journal of Immunology. 2012;189(7):3669–3680. doi: 10.4049/jimmunol.1103180.
    1. Moniuszko M., Bodzenta-Lukaszyk A., Kowal K., Lenczewska D., Dabrowska M. Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients. Clinical Immunology. 2009;130(3):338–346. doi: 10.1016/j.clim.2008.09.011.
    1. Wong K. L., Yeap W. H., Tai J. J. Y., Ong S. M., Dang T. M., Wong S. C. The three human monocyte subsets: implications for health and disease. Immunologic Research. 2012;53(1–3):41–57. doi: 10.1007/s12026-012-8297-3.
    1. Eljaszewicz A., Wiese M., Helmin-Basa A., et al. Collaborating with the enemy: function of macrophages in the development of neoplastic disease. Mediators of Inflammation. 2013;2013:11. doi: 10.1155/2013/831387.831387
    1. Kułak W., Sienkiewicz D., Okurowska-Zawada B., et al. Recombinant granulocyte colony-stimulating factor increases muscle strength in neuromuscular disorders. Pediatric Neurology. 2014;50(3):p. e9. doi: 10.1016/j.pediatrneurol.2013.11.016.
    1. Hayashiji N., Yuasa S., Miyagoe-Suzuki Y., et al. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nature Communications. 2015;6, article 6745 doi: 10.1038/ncomms7745.
    1. Hara M., Yuasa S., Shimoji K., et al. G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. Journal of Experimental Medicine. 2011;208(4):715–727. doi: 10.1084/jem.20101059.
    1. Song S., Sava V., Rowe A., et al. Granulocyte-colony stimulating factor (G-CSF) enhances recovery in mouse model of Parkinson's disease. Neuroscience Letters. 2011;487(2):153–157. doi: 10.1016/j.neulet.2010.10.012.
    1. Harada M., Nagafuji K., Fujisaki T., et al. G-CSF-induced mobilization of peripheral blood stem cells from healthy adults for allogeneic transplantation. Journal of Hematotherapy. 1996;5(1):63–71.
    1. de Kruijf E.-J. F. M., van Pel M., Hagoort H., et al. Repeated hematopoietic stem and progenitor cell mobilization without depletion of the bone marrow stem and progenitor cell pool in mice after repeated administration of recombinant murine G-CSF. Human Immunology. 2007;68(5):368–374. doi: 10.1016/j.humimm.2007.01.017.
    1. LaBarge M. A., Blau H. M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 2002;111(4):589–601. doi: 10.1016/s0092-8674(02)01078-4.
    1. Madeddu P., Emanueli C., Pelosi E., et al. Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischemic limbs. The FASEB Journal. 2004;18(14):1737–1739. doi: 10.1096/fj.04-2192fje.
    1. Shi M., Ishikawa M., Kamei N., et al. Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells. 2009;27(4):949–960. doi: 10.1002/stem.4.
    1. Christopher M. J., Rao M., Liu F., Woloszynek J. R., Link D. C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. The Journal of Experimental Medicine. 2011;208(2):251–260. doi: 10.1084/jem.20101700.
    1. Capoccia B. J., Shepherd R. M., Link D. C. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood. 2006;108(7):2438–2445. doi: 10.1182/blood-2006-04-013755.
    1. De Palma M., Murdoch C., Venneri M. A., Naldini L., Lewis C. E. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends in Immunology. 2007;28(12):519–524. doi: 10.1016/j.it.2007.09.004.
    1. de Palma M., Venneri M. A., Galli R., et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8(3):211–226. doi: 10.1016/j.ccr.2005.08.002.
    1. Venneri M. A., De Palma M., Ponzoni M., et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007;109(12):5276–5285. doi: 10.1182/blood-2006-10-053504.
    1. Abou-Khalil R., Le Grand F., Pallafacchina G., et al. Autocrine and paracrine angiopoietin 1/tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell. 2009;5(3):298–309. doi: 10.1016/j.stem.2009.06.001.
    1. Maisonpierre P. C., Suri C., Jones P. F., et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60. doi: 10.1126/science.277.5322.55.
    1. Scholz A., Plate K. H., Reiss Y. Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Annals of the New York Academy of Sciences. 2015 doi: 10.1111/nyas.12726.
    1. Patel A. S., Smith A., Nucera S., et al. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb. EMBO Molecular Medicine. 2013;5(6):858–869. doi: 10.1002/emmm.201302752.
    1. Davis B. H., Zarev P. V. Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytometry Part B: Clinical Cytometry. 2005;63(1):16–22. doi: 10.1002/cyto.b.20031.

Source: PubMed

3
購読する