A Randomized Pilot Trial Assessing the Role of Human Fibrinogen Concentrate in Decreasing Cryoprecipitate Use and Blood Loss in Infants Undergoing Cardiopulmonary Bypass

Christopher F Tirotta, Richard G Lagueruela, Apeksha Gupta, Daria Salyakina, David Aguero, Jorge Ojito, Kathleen Kubes, Robert Hannan, Redmond P Burke, Christopher F Tirotta, Richard G Lagueruela, Apeksha Gupta, Daria Salyakina, David Aguero, Jorge Ojito, Kathleen Kubes, Robert Hannan, Redmond P Burke

Abstract

The objective of this study was to determine whether treatment with human fibrinogen concentrate decreases the need for component blood therapy and blood loss in neonate and infant patients undergoing cardiopulmonary bypass. Pediatric patients (N = 30) undergoing elective cardiac surgery were randomized to receive human fibrinogen concentrate or placebo following cardiopulmonary bypass termination. The primary endpoint was the amount of cryoprecipitate administered. Secondary endpoints included estimated blood loss during the 24 h post-surgery; perioperative blood product transfusion; effects of fibrinogen infusion on global hemostasis, measured by laboratory testing and rotational thromboelastometry; and adverse events. No clinically significant differences were identified in baseline characteristics between groups. A significantly lower volume of cryoprecipitate was administered to the treatment group during the perioperative period [median (interquartile range) 0.0 (0.0-0.0) cc/kg vs 12.0 (8.2-14.3) cc/kg; P < 0.0001] versus placebo. No difference was observed between treatment groups in blood loss, laboratory coagulation tests, use of other blood components, or incidence of adverse events. FIBTEM amplitude of maximum clot firmness values was significantly higher among patients treated with human fibrinogen concentrate versus placebo (P ≤ 0.0001). No significant differences were observed in post-drug HEPTEM, INTEM, and EXTEM results. Human fibrinogen concentrate (70 mg/kg) administered after the termination of cardiopulmonary bypass reduced the need for transfusion with cryoprecipitate in a neonate and infant patient population.ClinicalTrials.gov identifier: NCT02822599.

Keywords: Cardiac surgical procedures; Cardiopulmonary bypass; Child; Fibrinogen; Hemostasis; Infant.

Conflict of interest statement

The authors have no relevant financial or non-financial interests to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Transfusion algorithm. ROTEM rotational thromboelastometry
Fig. 2
Fig. 2
CONSORT diagram
Fig. 3
Fig. 3
Adjusted FIBTEM graphs for FIBTEM A10 (A), A20 (B), and MCF (C). *Denotes a statistically significant difference between placebo and the treatment group. Whiskers indicate the maximum and minimum range, boundaries of the box indicate 25th–75th percentiles, border within the box indicates the median, ○ or + symbols linked by lines indicate the mean, ○ or + symbols outside the range indicate outliers or single data points. A10/A20 amplitude at 10/20 min, MCF maximum clot firmness

References

    1. Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations. J Thorac Cardiovasc Surg. 1996;111:1037–1046. doi: 10.1016/S0022-5223(96)70380-X.
    1. Paparella D, Brister SJ, Buchanan MR. Coagulation disorders of cardiopulmonary bypass: a review. Intensive Care Med. 2004;30:1873–1881. doi: 10.1007/s00134-004-2388-0.
    1. Miller BE, Tosone SR, Guzzetta NA, Miller JL, Brosius KK. Fibrinogen in children undergoing cardiac surgery: is it effective? Anesth Analg. 2004;99:1341–1346. doi: 10.1213/01.ANE.0000134811.27812.F0.
    1. Kern FH, Morana NJ, Sears JJ, Hickey PR. Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:541–546. doi: 10.1016/0003-4975(92)90451-9.
    1. Chan AK, Leaker M, Burrows FA, Williams WG, Gruenwald CE, Whyte L, et al. Coagulation and fibrinolytic profile of paediatric patients undergoing cardiopulmonary bypass. Thromb Haemost. 1997;77:270–277. doi: 10.1055/s-0038-1655952.
    1. Tirotta CF, Lagueruela RG, Salyakina D, Wang W, Taylor T, Ojito J, et al. Interval changes in ROTEM values during cardiopulmonary bypass in pediatric cardiac surgery patients. J Cardiothorac Surg. 2019;14:139. doi: 10.1186/s13019-019-0949-0.
    1. Tziomalos K, Vakalopoulou S, Perifanis V, Garipidou V. Treatment of congenital fibrinogen deficiency: overview and recent findings. Vasc Health Risk Manag. 2009;5:843–848. doi: 10.2147/VHRM.S5305.
    1. Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care. 2019;23:98. doi: 10.1186/s13054-019-2347-3.
    1. Kozek-Langenecker SA, Ahmed AB, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol. 2017;34:332–395. doi: 10.1097/EJA.0000000000000630.
    1. Faraoni D, Meier J, New HV, Van der Linden PJ, Hunt BJ. Patient blood management for neonates and children undergoing cardiac surgery: 2019 NATA guidelines. J Cardiothorac Vasc Anesth. 2019;33:3249–3263. doi: 10.1053/j.jvca.2019.03.036.
    1. Franchini M, Lippi G. Fibrinogen replacement therapy: a critical review of the literature. Blood Transfus. 2012;10:23–27.
    1. Dickneite G, Pragst I, Joch C, Bergman GE. Animal model and clinical evidence indicating low thrombogenic potential of fibrinogen concentrate (Haemocomplettan P) Blood Coagul Fibrinolysis. 2009;20:535–540. doi: 10.1097/MBC.0b013e32832da1c5.
    1. Solomon C, Gröner A, Ye J, Inna P. Safety of fibrinogen concentrate: analysis of more than 27 years of pharmacovigilance data. Thromb Haemost. 2015;113:759–771. doi: 10.1160/TH14-06-0514.
    1. Callum J, Farkouh ME, Scales DC, Heddle NM, Crowther M, Rao V, et al. Effect of fibrinogen concentrate vs cryoprecipitate on blood component transfusion after cardiac surgery: the FIBRES randomized clinical trial. JAMA. 2019;322:1–11. doi: 10.1001/jama.2019.17312.
    1. Siemens K, Hunt BJ, Harris J, Nyman AG, Parmar K, Tibby SM. Individualized, intraoperative dosing of fibrinogen concentrate for the prevention of bleeding in neonatal and infant cardiac surgery using cardiopulmonary bypass (FIBCON): a phase 1b/2a randomized controlled trial. Circ Cardiovasc Interv. 2020;13:e009465. doi: 10.1161/CIRCINTERVENTIONS.120.009465.
    1. Erdoes G, Koster A, Meesters MI, Ortmann E, Bolliger D, Baryshnikova E, et al. The role of fibrinogen and fibrinogen concentrate in cardiac surgery: an international consensus statement from the Haemostasis and Transfusion Scientific Subcommittee of the European Association of Cardiothoracic Anaesthesiology. Anaesthesia. 2019;74:1589–1600. doi: 10.1111/anae.14842.
    1. Rahe-Meyer N, Pichlmaier M, Haverich A, Solomon C, Winterhalter M, Piepenbrock S, et al. Bleeding management with fibrinogen concentrate targeting a high-normal plasma fibrinogen level: a pilot study. Br J Anaesth. 2009;102:785–792. doi: 10.1093/bja/aep089.
    1. Romlin BS, Wåhlander H, Berggren H, Synnergren M, Baghaei F, Nilsson K, et al. Intraoperative thromboelastometry is associated with reduced transfusion prevalence in pediatric cardiac surgery. Anesth Analg. 2011;112:30–36. doi: 10.1213/ANE.0b013e3181fe4674.
    1. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88:312–319. doi: 10.1213/00000539-199902000-00016.
    1. Tirotta CF, Lagueruela RG, Madril D, Ojito J, Balli C, Velis E, et al. Use of human fibrinogen concentrate in pediatric cardiac surgery patients. Int J Anesth Anesthesiol. 2015;2:037. doi: 10.23937/2377-4630/2/4/1037.
    1. Gielen C, Dekkers O, Stijnen T, Schoones J, Brand A, Klautz R, et al. The effects of pre- and postoperative fibrinogen levels on blood loss after cardiac surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2014;18:292–298. doi: 10.1093/icvts/ivt506.
    1. Faraoni D, Willems A, Savan V, Demanet H, De Ville A, Van der Linden P. Plasma fibrinogen concentration is correlated with postoperative blood loss in children undergoing cardiac surgery. A retrospective review. Eur J Anaesthesiol. 2014;31:317–326. doi: 10.1097/EJA.0000000000000043.
    1. Tirotta CF, Lagueruela RG, Madril D, Salyakina D, Wang W, Taylor T, et al. Correlation between ROTEM FIBTEM maximum clot firmness and fibrinogen levels in pediatric cardiac surgery patients. Clin Appl Thromb Hemost. 2019;25:1076029618816382. doi: 10.1177/1076029618816382.
    1. Li JY, Gong J, Zhu F, Moodie J, Newitt A, Uruthiramoorthy L, et al. Fibrinogen concentrate in cardiovascular surgery: a meta-analysis of randomized controlled trials. Anesth Analg. 2018;127:612–621. doi: 10.1213/ANE.0000000000003508.
    1. Rahe-Meyer N, Levy JH, Mazer CD, Schramko A, Klein AA, Brat R, et al. Randomized evaluation of fibrinogen vs placebo in complex cardiovascular surgery (REPLACE): a double-blind phase III study of haemostatic therapy. Br J Anaesth. 2016;117:41–51. doi: 10.1093/bja/aew169.
    1. Guzzetta NA, Miller BE. Principles of hemostasis in children: models and maturation. Paediatr Anaesth. 2011;21:3–9. doi: 10.1111/j.1460-9592.2010.03410.x.
    1. Downey LA, Andrews J, Hedlin H, Kamra K, McKenzie ED, Hanley FL, et al. Fibrinogen concentrate as an alternative to cryoprecipitate in a postcardiopulmonary transfusion algorithm in infants undergoing cardiac surgery: a prospective randomized controlled trial. Anesth Analg. 2020;130:740–751. doi: 10.1213/ANE.0000000000004384.
    1. Galas FR, de Almeida JP, Fukushima JT, Vincent JL, Osawa EA, Zeferino S, et al. Hemostatic effects of fibrinogen concentrate compared with cryoprecipitate in children after cardiac surgery: a randomized pilot trial. J Thorac Cardiovasc Surg. 2014;148:1647–1655. doi: 10.1016/j.jtcvs.2014.04.029.

Source: PubMed

3
購読する