Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50-60 year old masters athletes

Kamalika Mukherjee, Brittany A Edgett, Harrison W Burrows, Cecilia Castro, Julian L Griffin, Adel Giaid Schwertani, Brendon J Gurd, Colin D Funk, Kamalika Mukherjee, Brittany A Edgett, Harrison W Burrows, Cecilia Castro, Julian L Griffin, Adel Giaid Schwertani, Brendon J Gurd, Colin D Funk

Abstract

Exercise is beneficial for a variety of age-related disorders. However, the molecular mechanisms mediating the beneficial adaptations to exercise in older adults are not well understood. The aim of the current study was to utilize a dual approach to characterize the genetic and metabolic adaptive pathways altered by exercise in veteran athletes and age-matched untrained individuals. Two groups of 50-60 year old males: competitive cyclists (athletes, n = 9; VO2peak 59.1±5.2 ml·kg(-1)·min(-1); peak aerobic power 383±39 W) and untrained, minimally active individuals (controls, n = 8; VO2peak 35.9±9.7 ml·kg(-1)·min(-1); peak aerobic power 230±57 W) were examined. All participants completed an acute bout of submaximal endurance exercise, and blood and urine samples pre- and post-exercise were analyzed for gene expression and metabolic changes utilizing genome-wide DNA microarray analysis and NMR spectroscopy-based metabolomics, respectively. Our results indicate distinct differences in gene and metabolite expression involving energy metabolism, lipids, insulin signaling and cardiovascular function between the two groups. These findings may lead to new insights into beneficial signaling pathways of healthy aging and help identify surrogate markers for monitoring exercise and training load.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Gene expression in control and…
Figure 1. Gene expression in control and athlete subjects.
(A) Heatmap of the entire genome including all normalized and filtered probes in athlete and control groups across all time-points (T1: 24 hrs before exercise; T2: immediately after exercise; T3: 24 hrs after exercise). Red represents an up-regulation, and green a downregulation in gene expression. The probes were clustered by k-means clustering into 5 broad clusters. Representative Gene Ontology (GO) biological processes of each cluster are shown in their respective colours on the left. (B) Representative heatmap of probes found significantly different between athlete and control groups across all time-points (T1: 24 hrs before exercise; T2: immediately after exercise; T3: 24 hrs after exercise). The probes were clustered by hierarchical clustering. Fold change>1.5; False Discovery Rate (FDR)<0.1. (C) Top 10 networks representing genes differentially expressed between athlete and control groups across all time points by Metacore analysis, with corresponding p-values and FDR.
Figure 2. Differential gene expression between control…
Figure 2. Differential gene expression between control and athlete subjects after exercise.
(A) Venn diagram representing genes differentially expressed between control and athlete groups at time points T1 (blue; 24 hrs before exercise; n = 4 for each group); T2 (yellow; immediately after exercise; n = 7 for controls and n = 8 for athlete group); and T3 (green; 24 hrs after exercise; n = 4 for each group). Fold change>1.5; False Discovery Rate (FDR)<0.1. Genes differentially regulated at two or three time points are shown in the corresponding intersecting segments. (B) Heatmap representing genes differentially expressed between individual control and athlete samples at time point T2 (immediately after exercise). Each column represents an individual subject. Red represents an up-regulation, and green a down-regulation in gene expression. Probes and samples are clustered by hierarchical clustering Fold change>1.5; FDR<0.1. (C) Top 10 canonical pathway maps representing genes differentially expressed between athlete and control groups at time-point T2 by Metacore analysis with corresponding p-values and FDR.
Figure 3. Validation of microarray data.
Figure 3. Validation of microarray data.
(A) Fold-change in expression of genes UTS2, HSD11B1, OCLN, IGF1R and INSIG2 between athlete (n = 8) and control (n = 7) groups at time point T2, as evident by microarray analysis (Nexus Gene Expression and Genespring), and validated by quantitative real-time PCR (qRT-PCR). qRT-PCR data are normalized to the housekeeping gene and were statistically significant with p<0.05 (n = 6 in each group). (B) Concentration of urotensin (pg/ml) in the plasma of control (n = 8) and athlete (n = 6) subjects at time-point T1.
Figure 4. 1 H NMR spectra of…
Figure 4. 1H NMR spectra of control and athlete urine samples.
1H NMR spectra of a representative pre- (T1) and post-exercise (T2) urine sample from an athlete (A) and control (B) subject highlighting visible differences between the two spectra and the major resonances. Numbered biomolecules correspond to Table 3.
Figure 5. Statistical analysis of 1 H…
Figure 5. Statistical analysis of 1H NMR spectra.
(A) OPLS-DA component plot derived from spectra of urine before (▴, athlete and •, control) and after execise (Δ, athlete and ○, control). R2X = 0.50; Q2 = 0.43. (B) OPLS coefficient plot showing the most significant contributors to the separation. Numbered biomolecules correspond to Table 3.
Figure 6. Pathway analysis of urinary metabolites.
Figure 6. Pathway analysis of urinary metabolites.
Top 10 networks representing metabolites differentially expressed between athlete and control groups pre- and post-exercise by Metacore analysis, with corresponding p-values and FDR.

References

    1. Sattelmair JR, Pertman JH, Forman DE (2009) Effects of physical activity on cardiovascular and noncardiovascular outcomes in older adults. Clin Geriatr Med 25: : 677–702, viii-ix.
    1. Kawai T, Morita K, Masuda K, Nishida K, Sekiyama A, et al. (2007) Physical exercise-associated gene expression signatures in peripheral blood. Clin J Sport Med 17: 375–383.
    1. Buttner P, Mosig S, Lechtermann A, Funke H, Mooren FC (2007) Exercise affects the gene expression profiles of human white blood cells. J Appl Physiol 102: 26–36.
    1. Connolly PH, Caiozzo VJ, Zaldivar F, Nemet D, Larson J, et al. (2004) Effects of exercise on gene expression in human peripheral blood mononuclear cells. J Appl Physiol 97: 1461–1469.
    1. Nakamura S, Kobayashi M, Sugino T, Kajimoto O, Matoba R, et al. (2010) Effect of exercise on gene expression profile in unfractionated peripheral blood leukocytes. Biochem Biophys Res Commun 391: 846–851.
    1. Zieker D, Fehrenbach E, Dietzsch J, Fliegner J, Waidmann M, et al. (2005) cDNA microarray analysis reveals novel candidate genes expressed in human peripheral blood following exhaustive exercise. Physiol Genomics 23: 287–294.
    1. Zieker D, Zieker J, Dietzsch J, Burnet M, Northoff H, et al. (2005) CDNA-microarray analysis as a research tool for expression profiling in human peripheral blood following exercise. Exerc Immunol Rev 11: 86–96.
    1. Yoshioka M, Tanaka H, Shono N, Snyder EE, Shindo M, et al. (2003) Serial analysis of gene expression in the skeletal muscle of endurance athletes compared to sedentary men. FASEB J 17: 1812–1819.
    1. Stepto NK, Coffey VG, Carey AL, Ponnampalam AP, Canny BJ, et al. (2009) Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc 41: 546–565.
    1. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147: 126–132.
    1. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, et al. (2010) Metabolic signatures of exercise in human plasma. Sci Transl Med 2: 33ra37.
    1. Yan B, A J, Wang G, Lu H, Huang X, et al. (2009) Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. J Appl Physiol 106: 531–538.
    1. Enea C, Seguin F, Petitpas-Mulliez J, Boildieu N, Boisseau N, et al. (2010) (1)H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem 396: 1167–1176.
    1. Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, et al. (2010) (1)H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. J Proteome Res 9: 6405–6416.
    1. Janse de Jonge XA (2003) Effects of the menstrual cycle on exercise performance. Sports Med 33: 833–851.
    1. Craig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC (2006) Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem 78: 2262–2267.
    1. Pears MR, Rubtsov D, Mitchison HM, Cooper JD, Pearce DA, et al. (2007) Strategies for data analyses in a high resolution 1H NMR based metabolomics study of a mouse model of Batten disease. Metabolomics 3: 121–136.
    1. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35: D521–526.
    1. West GB, Bergman A (2009) Toward a systems biology framework for understanding aging and health span. J Gerontol A Biol Sci Med Sci 64: 205–208.
    1. Soltow QA, Jones DP, Promislow DE (2010) A network perspective on metabolism and aging. Integr Comp Biol 50: 844–854.
    1. Greenhaff PL, Hargreaves M (2011) ‘Systems biology’ in human exercise physiology: is it something different from integrative physiology? J Physiol 589: 1031–1036.
    1. Keller P, Vollaard N, Babraj J, Ball D, Sewell DA, et al. (2007) Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training. Biochem Soc Trans 35: 1306–1309.
    1. Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, et al. (2010) Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108: 1487–1496.
    1. Zeibig J, Karlic H, Lohninger A, Damsgaard R, Smekal G (2005) Do blood cells mimic gene expression profile alterations known to occur in muscular adaptation to endurance training? Eur J Appl Physiol 95: 96–104.
    1. Prior BM, Lloyd PG, Yang HT, Terjung RL (2003) Exercise-induced vascular remodeling. Exerc Sport Sci Rev 31: 26–33.
    1. Saltin B, Radegran G, Koskolou MD, Roach RC (1998) Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand 162: 421–436.
    1. Eggermont L, Swaab D, Luiten P, Scherder E (2006) Exercise, cognition and Alzheimer's disease: more is not necessarily better. Neurosci Biobehav Rev 30: 562–575.
    1. Van der Borght K, Kobor-Nyakas DE, Klauke K, Eggen BJ, Nyakas C, et al. (2009) Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 19: 928–936.
    1. Yarasheski KE (2003) Review article: Exercise, aging, and muscle protein metabolism. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 58: M918–M922.
    1. Magaudda L, Di Mauro D, Trimarchi F, Anastasi G (2004) Effects of physical exercise on skeletal muscle fiber: ultrastructural and molecular aspects. Basic Appl Myol 14: 17–21.
    1. McGivney BA, McGettigan PA, Browne JA, Evans AC, Fonseca RG, et al. (2010) Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11: 398.
    1. Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, et al. (2012) Exercise and the aging immune system. Ageing Res Rev 11: 404–420.
    1. Wolach B, Gavrieli R, Ben-Dror SG, Zigel L, Eliakim A, et al. (2005) Transient decrease of neutrophil chemotaxis following aerobic exercise. Med Sci Sports Exerc 37: 949–954.
    1. Kohut ML, Senchina DS (2004) Reversing age-associated immunosenescence via exercise. Exerc Immunol Rev 10: 6–41.
    1. Coady MJ, Wallendorff B, Gagnon DG, Lapointe JY (2002) Identification of a novel Na+/myo-inositol cotransporter. J Biol Chem 277: 35219–35224.
    1. Larner J (2002) D-chiro-inositol–its functional role in insulin action and its deficit in insulin resistance. Int J Exp Diabetes Res 3: 47–60.
    1. Besson D, Pavageau A-H, Valo I, Bourreau A, Bélanger A, et al.. (2011) A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Molecular & Cellular Proteomics 10..
    1. Oue N, Sentani K, Noguchi T, Ohara S, Sakamoto N, et al. (2009) Serum olfactomedin 4 (GW112, hGC-1) in combination with Reg IV is a highly sensitive biomarker for gastric cancer patients. Int J Cancer 125: 2383–2392.
    1. Csaki LS, Reue K (2010) Lipins: multifunctional lipid metabolism proteins. Annu Rev Nutr 30: 257–272.
    1. Suviolahti E, Reue K, Cantor RM, Phan J, Gentile M, et al. (2006) Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Hum Mol Genet 15: 377–386.
    1. Donkor J, Sparks LM, Xie H, Smith SR, Reue K (2008) Adipose tissue lipin-1 expression is correlated with peroxisome proliferator-activated receptor alpha gene expression and insulin sensitivity in healthy young men. J Clin Endocrinol Metab 93: 233–239.
    1. Higashida K, Higuchi M, Terada S (2008) Potential role of lipin-1 in exercise-induced mitochondrial biogenesis. Biochem Biophys Res Commun 374: 587–591.
    1. Rivera-Brown AM, Frontera WR (2012) Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM R 4: 797–804.
    1. Kojda G, Hambrecht R (2005) Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res 67: 187–197.
    1. Ross B, McKendy K, Giaid A (2010) Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol 298: R1156–1172.
    1. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, et al. (2004) 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25: 831–866.
    1. Pereira CD, Azevedo I, Monteiro R, Martins MJ (2012) 11beta-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab 14: 869–881.
    1. Feldman GJ, Mullin JM, Ryan MP (2005) Occludin: structure, function and regulation. Adv Drug Deliv Rev 57: 883–917.
    1. Tran L, Greenwood-Van Meerveld B (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci 68: 1045–1056.
    1. Zhang Y, Zhang P, Shen X, Tian S, Wu Y, et al. (2013) Early Exercise Protects the Blood-Brain Barrier from Ischemic Brain Injury via the Regulation of MMP-9 and Occludin in Rats. Int J Mol Sci 14: 11096–11112.
    1. Ikeda Y, Imai Y, Kumagai H, Nosaka T, Morikawa Y, et al. (2004) Vasorin, a transforming growth factor beta-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Proc Natl Acad Sci U S A 101: 10732–10737.
    1. Ueda S, Fujimoto S, Hiramoto K, Negishi M, Katoh H (2008) Dock4 regulates dendritic development in hippocampal neurons. J Neurosci Res 86: 3052–3061.
    1. Reichelt AC, Rodgers RJ, Clapcote SJ (2012) The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology 62: 1519–1526.
    1. Nieratschker V, Meyer-Lindenberg A, Witt SH (2011) Genome-wide investigation of rare structural variants identifies VIPR2 as a new candidate gene for schizophrenia. Expert Rev Neurother 11: 937–941.
    1. Kurapati R, McKenna C, Lindqvist J, Williams D, Simon M, et al. (2012) Myofibrillar myopathy caused by a mutation in the motor domain of mouse MyHC IIb. Hum Mol Genet 21: 1706–1724.
    1. Alberini CM, Chen DY (2012) Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci 35: 274–283.
    1. Rodriguez S, Gaunt TR, Day IN (2007) Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum Genet 122: 1–21.
    1. Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118: 337–351.
    1. Jung HJ, Kim KH, Kim ND, Han G, Kwon HJ (2011) Identification of a novel small molecule targeting UQCRB of mitochondrial complex III and its anti-angiogenic activity. Bioorg Med Chem Lett 21: 1052–1056.
    1. Li CG, Gruidl M, Eschrich S, McCarthy S, Wang HG, et al. (2008) Insig2 is associated with colon tumorigenesis and inhibits Bax-mediated apoptosis. Int J Cancer 123: 273–282.
    1. Kayashima T, Nakata K, Ohuchida K, Ueda J, Shirahane K, et al. (2011) Insig2 is overexpressed in pancreatic cancer and its expression is induced by hypoxia. Cancer Sci 102: 1137–1143.
    1. Guerin P, El Mouatassim S, Menezo Y (2001) Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 7: 175–189.
    1. Bassenge E, Sommer O, Schwemmer M, Bunger R (2000) Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol 279: H2431–2438.
    1. Groussard C, Rannou-Bekono F, Machefer G, Chevanne M, Vincent S, et al. (2003) Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol 89: 14–20.
    1. Pardee AB, Potter VR (1949) Malonate inhibition of oxidations in the Krebs tricarboxylic acid cycle. J Biol Chem 178: 241–250.
    1. Ka T, Yamamoto T, Moriwaki Y, Kaya M, Tsujita J, et al. (2003) Effect of exercise and beer on the plasma concentration and urinary excretion of purine bases. J Rheumatol 30: 1036–1042.
    1. Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4: 409–454.
    1. Burke MF, Dunbar RL, Rader DJ (2010) Could exercise metabolomics pave the way for gymnomimetics? Sci Transl Med 2: 41ps35.

Source: PubMed

3
購読する