Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis

Xinghua Shao, Lei Tian, Weijia Xu, Zhen Zhang, Chunlin Wang, Chaojun Qi, Zhaohui Ni, Shan Mou, Xinghua Shao, Lei Tian, Weijia Xu, Zhen Zhang, Chunlin Wang, Chaojun Qi, Zhaohui Ni, Shan Mou

Abstract

Background: Urinary Kidney Injury Molecule 1 (KIM-1) is a proximal tubular injury biomarker for early detection of acute kidney injury (AKI), with variable performance characteristics depending on clinical and population settings.

Methods: Meta-analysis was performed to assess the diagnostic value of urinary KIM-1 in AKI. Relevant studies were searched from MEDLINE, EMBASE, Pubmed, Elsevier Science Direct, Scopus, Web of Science, Google Scholar and Cochrane Library. Meta-analysis methods were used to pool sensitivity and specificity and to construct summary receiver operating characteristic (SROC) curves.

Results: A total of 2979 patients from 11 eligible studies were enrolled in the analysis. Five prospective cohorts, two cross-sectional and four case-control studies were identified for meta-analysis. The estimated sensitivity of urinary KIM-1 for the diagnosis of AKI was 74.0% (95% CI, 61.0%-84.0%), and specificity was 86.0% (95% CI, 74.0%-93.0%). The SROC analysis showed an area under the curve of 0.86(0.83-0.89). Subgroup analysis suggested that population settings and detection time were the key factors affecting the efficiency of KIM-1 for AKI diagnosis.

Limitation: Various population settings, different definition of AKI and Serum creatinine level used as the standard might have influence on AKI diagnosis. The relatively small number of studies and heterogeneity between them also affected the evaluation.

Conclusion: Urinary KIM-1 may be a promising biomarker for early detection of AKI with considerable predictive value, especially for cardiac surgery patients, and its potential value needs to be validated in large studies and across a broader scope of clinical settings.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow diagram for the review…
Figure 1. Flow diagram for the review process and outcomes of inclusion and exclusion.
Figure 2. Forest plots of the pooled…
Figure 2. Forest plots of the pooled sensitivity (A) and specificity (B) of urine kidney injury molecule 1 level in predicting acute kidney injury across all settings.
The black squares in the gray squares and the horizontal lines represent the point estimate and 95% confidence interval (CI), respectively. The dotted line represents the pooled estimate, and the diamond shape represents the 95% CI of the pooled estimate.
Figure 3. Forest plot of the pooled…
Figure 3. Forest plot of the pooled diagnostic odds ratio of urine kidney injury molecule 1 level in predicting acute kidney injury across all settings.
The black squares in the graysquares and the horizontal lines representthe point estimate and 95% confidence interval(CI), respectively. The dotted line represents the pooled estimate, and the diamond shape represents the 95% CI of the pooled estimate.
Figure 4. Hierarchical summary receiver perating characteristic…
Figure 4. Hierarchical summary receiver perating characteristic (SROC) plots of urine kidney injury molecule 1 level to predict acute kidney injury across all settings.
The curve is represented by the straight line; each of the analyzed studies is represented by a circle; the point estimate to which summary sensitivity (SENS) and specificity (SPEC) correspond is represented by the diamond shape, and the respective 95% confidence intervals, by the dashed line, whereas the 95% confidence area in which a new study will be located is represented by the dotted line. Abbreviation: AUC, area under the curve.
Figure 5. Funnel plot for the evaluation…
Figure 5. Funnel plot for the evaluation of potential publication bias in diagnosis of KIM-1 for AKI.

References

    1. Ronco C, Levin A, Warnock DG, Mehta R, Kellum JA, et al. (2007) Improving outcomes from acute kidney injury (AKI): Report on an initiative. Int J Artif Organs 30: 373–376.
    1. Webb S, Dobb G (2007) ARF, ATN or AKI? It’s now acute kidney injury. Anaesth Intensive Care 35: 843–844.
    1. Li PK, Burdmann EA, Mehta RL (2013) Acute kidney injury: Acute kidney injury—global health alert. Nat Rev Nephrol 9: 133–135.
    1. Lattanzio MR, Kopyt NP (2009) Acute kidney injury: new concepts in definition, diagnosis, pathophysiology, and treatment. J Am Osteopath Assoc 109: 13–19.
    1. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38: 1933–1953.
    1. Slocum JL, Heung M, Pennathur S (2012) Marking renal injury: can we move beyond serum creatinine? Transl Res 159: 277–289.
    1. Adiyanti SS, Loho T (2012) Acute Kidney Injury (AKI) biomarker. Acta Med Indones 44: 246–255.
    1. Edelstein CL (2008) Biomarkers of acute kidney injury. Adv Chronic Kidney Dis 15: 222–234.
    1. Liangos O, Tighiouart H, Perianayagam MC, Kolyada A, Han WK, et al. (2009) Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 14: 423–431.
    1. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, et al. (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73: 863–869.
    1. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62: 237–244.
    1. Waanders F, van Timmeren MM, Stegeman CA, Bakker SJ, van Goor H (2010) Kidney injury molecule-1 in renal disease. J Pathol 220: 7–16.
    1. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, et al. (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273: 4135–4142.
    1. Bonventre JV (2008) Kidney Injury Molecule-1 (KIM-1): a specific and sensitive biomarker of kidney injury. Scand J Clin Lab Invest Suppl 241: 78–83.
    1. Huang Y, Don-Wauchope AC (2011) The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review. Inflamm Allergy Drug Targets 10: 260–271.
    1. Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73: 1008–1016.
    1. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, et al. (1999) Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet 354: 1896–1900.
    1. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3: 25.
    1. Whiting P, Rutjes AW, Dinnes J, Reitsma J, Bossuyt PM, et al. (2004) Development and validation of methods for assessing the quality of diagnostic accuracy studies. Health Technol Assess 8: 1–234.
    1. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol 6: 31.
    1. Deville WL, Buntinx F, Bouter LM, Montori VM, de Vet HC, et al. (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2: 9.
    1. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.
    1. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
    1. Vaidya VS, Waikar SS, Ferguson MA, Collings FB, Sunderland K, et al. (2008) Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci 1: 200–208.
    1. Han WK, Wagener G, Zhu Y, Wang S, Lee HT (2009) Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol 4: 873–882.
    1. Naggar GFE, Srogy HAEL, Fathy SM (2012) Kidney Injury Molecule - 1 (KIM- 1): an early novel biomarker for Acute Kidney Injury (AKI) in critically – ill patients. Life Sci J 9: 3937–3943.
    1. Ferguson MA, Vaidya VS, Waikar SS, Collings FB, Sunderland KE, et al. (2010) Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int 77: 708–714.
    1. Liang XL, Liu SX, Chen YH, Yan LJ, Li H, et al. (2010) Combination of urinary kidney injury molecule-1 and interleukin-18 as early biomarker for the diagnosis and progressive assessment of acute kidney injury following cardiopulmonary bypass surgery: a prospective nested case-control study. Biomarkers 15: 332–339.
    1. Endre ZH, Pickering JW, Walker RJ, Devarajan P, Edelstein CL, et al. (2011) Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int 79: 1119–1130.
    1. Nickolas TL, Schmidt-Ott KM, Canetta P, Forster C, Singer E, et al. (2012) Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol 59: 246–255.
    1. Genc G, Ozkaya O, Avci B, Aygun C, Kucukoduk S (2013) Kidney injury molecule-1 as a promising biomarker for acute kidney injury in premature babies. Am J Perinatol 30: 245–252.
    1. Sarafidis K, Tsepkentzi E, Agakidou E, Diamanti E, Taparkou A, et al. (2012) Serum and urine acute kidney injury biomarkers in asphyxiated neonates. Pediatr Nephrol 27: 1575–1582.
    1. Barrera-Chimal J, Perez-Villalva R, Rodriguez-Romo R, Reyna J, Uribe N, et al. (2013) Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury. Kidney Int 83: 93–103.
    1. Bhavsar NA, Kottgen A, Coresh J, Astor BC (2012) Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) as predictors of incident CKD stage 3: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 60: 233–240.
    1. Sprenkle P, Russo P (2013) Molecular markers for ischemia, do we have something better then creatinine and glomerular filtration rate? Arch Esp Urol 66: 99–114.
    1. Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, et al. (2013) Performance of Kidney Injury Molecule-1 and Liver Fatty Acid-Binding Protein and Combined Biomarkers of AKI after Cardiac Surgery. Clin J Am Soc Nephrol 8: 1079–1088.

Source: PubMed

3
購読する