Electrocardiographic patch devices and contemporary wireless cardiac monitoring

Erik Fung, Marjo-Riitta Järvelin, Rahul N Doshi, Jerold S Shinbane, Steven K Carlson, Luanda P Grazette, Philip M Chang, Rajbir S Sangha, Heikki V Huikuri, Nicholas S Peters, Erik Fung, Marjo-Riitta Järvelin, Rahul N Doshi, Jerold S Shinbane, Steven K Carlson, Luanda P Grazette, Philip M Chang, Rajbir S Sangha, Heikki V Huikuri, Nicholas S Peters

Abstract

Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG), Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable "on-body" ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks) is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery.

Keywords: ambulatory patients; arrhythmias; cardiac; conduction system disorders; electrocardiography; healthcare delivery; medical devices.

Figures

Figure 1
Figure 1
Contemporary options for cardiac monitoring. The range of options for outpatient cardiac monitoring varies depending on the intended study duration, the presence or absence of symptoms, the need for continuous deployment (solid line with arrows) vs. intermittent symptom-triggered monitoring, ability of the subject to activate or initiate recording, likelihood of study completion specific to device design, and lifestyle (e.g., hindrance to work and activities, need for water resistance, ability to tolerate presence of device). Dashed line with arrow indicates serial deployment of multiple patch devices to achieve a study period of 30 days. ICD, implantable cardioverter defibrillator. ICM, injectable cardiac monitor. ILR, implantable loop recorder. PPM, pacemaker. *Manual contact and triggering required for intermittent activation or operation. §Superseded by SEEQ MCT.
Figure 2
Figure 2
A selection of contemporary wireless mobile cardiac monitoring devices. Two leading AECG adhesive patch devices on the medical device market today are (A) second-generation ZIO® XT Patch by iRhythm Technologies, Inc. and (B) SEEQ™ MCT patch device by Medtronic, Inc. (cellular transmitter not shown). Featuring touch-activable electrodes configured for the Apple iPhone or Androidbased systems are (C) third-generation AliveCor® by AliveCor, Inc. and (D) ECG Check by Cardiac Designs, LLC. As the first-in-class injectable cardiac monitor, (E) Reveal LINQ™ (4.0 × 7.2 × 44.8 mm; 2.4 g) by Medtronic, Inc. can record rhythm data for up to 3 years.

References

    1. Ackermans P. A., Solosko T. A., Spencer E. C., Gehman S. E., Nammi K., Engel J., et al. . (2012). A user-friendly integrated monitor-adhesive patch for long-term ambulatory electrocardiogram monitoring. J. Electrocardiol. 45, 148–153. 10.1016/j.jelectrocard.2011.10.007
    1. Alyeshmerni D., Pirmohamed A., Barac A., Smirniotopoulos J., Xue E., Goldstein S., et al. . (2013). Transesophageal echocardiographic screening before atrial flutter ablation: is it necessary for patient safety? J. Am. Soc. Echocardiogr. 26, 1099–1105. 10.1016/j.echo.2013.05.017
    1. Barrett P. M., Komatireddy R., Haaser S., Topol S., Sheard J., Encinas J., et al. . (2014). Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127, 95.e11–97. 10.1016/j.amjmed.2013.10.003
    1. Biblo L. A., Yuan Z., Quan K. J., Mackall J. A., Rimm A. A. (2001). Risk of stroke in patients with atrial flutter. Am. J. Cardiol. 87, 346–349, A349. 10.1016/S0002-9149(00)01374-6
    1. Bolourchi M., Batra A. S. (2015). Diagnostic yield of patch ambulatory electrocardiogram monitoring in children (from a national registry). Am. J. Cardiol. 115, 630–634. 10.1016/j.amjcard.2014.12.014
    1. Bouchardy J., Therrien J., Pilote L., Ionescu-Ittu R., Martucci G., Bottega N., et al. . (2009). Atrial arrhythmias in adults with congenital heart disease. Circulation 120, 1679–1686. 10.1161/CIRCULATIONAHA.109.866319
    1. Calkins H., Kuck K. H., Cappato R., Brugada J., Camm A. J., Chen S. A., et al. . (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart. Heart Rhythm. 9, 632–696.e621. 10.1016/j.hrthm.2011.12.016
    1. Chen L. Y., Sotoodehnia N., Buzkova P., Lopez F. L., Yee L. M., Heckbert S. R., et al. . (2013). Atrial fibrillation and the risk of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study. JAMA Intern. Med. 173, 29–35. 10.1001/2013.jamainternmed.744
    1. Cheung C. C., Kerr C. R., Krahn A. D. (2014). Comparing 14-day adhesive patch with 24-h Holter monitoring. Future Cardiol. 10, 319–322. 10.2217/fca.14.24
    1. Czosek R. J., Anderson J., Khoury P. R., Knilans T. K., Spar D. S., Marino B. S. (2013). Utility of ambulatory monitoring in patients with congenital heart disease. Am. J. Cardiol. 111, 723–730. 10.1016/j.amjcard.2012.11.021
    1. Dewland T. A., Olgin J. E., Vittinghoff E., Marcus G. M. (2013). Incident atrial fibrillation among Asians, Hispanics, blacks, and whites. Circulation 128, 2470–2477. 10.1161/CIRCULATIONAHA.113.002449
    1. Duffee D. F., Shen W. K., Smith H. C. (1998). Suppression of frequent premature ventricular contractions and improvement of left ventricular function in patients with presumed idiopathic dilated cardiomyopathy. Mayo Clin. Proc. 73, 430–433. 10.1016/S0025-6196(11)63724-5
    1. Eisenberg E. E., Carlson S. K., Doshi R. N., Shinbane J. S., Chang P. M., Saxon L. A. (2014). Chronic ambulatory monitoring: results of a large single-center experience. J. Innov. Card. Rhythm Manage. 5, 1818–1823.
    1. Elijovich L., Josephson S. A., Fung G. L., Smith W. S. (2009). Intermittent atrial fibrillation may account for a large proportion of otherwise cryptogenic stroke: a study of 30-day cardiac event monitors. J. Stroke Cerebrovasc. Dis. 18, 185–189. 10.1016/j.jstrokecerebrovasdis.2008.09.005
    1. Engel J. M., Mehta V., Fogoros R., Chavan A. (2012). Study of arrhythmia prevalence in NUVANT Mobile Cardiac Telemetry system patients. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 2440–2443. 10.1109/EMBC.2012.634645
    1. Euler D. E., Friedman P. A. (2003). Atrial arrhythmia burden as an endpoint in clinical trials: is it the best surrogate? Lessons from a multicenter defibrillator trial. Card. Electrophysiol. Rev. 7, 355–358. 10.1023/B:CEPR.0000023138.85821.63
    1. Gallagher M. M., Obel O. A., Camm J. A. (1997). Tachycardia-induced atrial myopathy: an important mechanism in the pathophysiology of atrial fibrillation? J. Cardiovasc. Electrophysiol. 8, 1065–1074. 10.1111/j.1540-8167.1997.tb00631.x
    1. Gladstone D. J., Spring M., Dorian P., Panzov V., Thorpe K. E., Hall J., et al. . (2014). Atrial fibrillation in patients with cryptogenic stroke. N. Engl. J. Med. 370, 2467–2477. 10.1056/NEJMoa1311376
    1. Glatz A. C., McBride M. G., Paridon S. M., Cohen M. S., Walker S. A., Gaynor J. W., et al. . (2010). Long-term noninvasive arrhythmia assessment after surgical repair of sinus venosus atrial septal defect. Congenit. Heart Dis. 5, 141–148. 10.1111/j.1747-0803.2010.00388.x
    1. Glotzer T. V., Daoud E. G., Wyse D. G., Singer D. E., Ezekowitz M. D., Hilker C., et al. . (2009). The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ. Arrhythm. Electrophysiol. 2, 474–480. 10.1161/CIRCEP.109.849638
    1. Glotzer T. V., Hellkamp A. S., Zimmerman J., Sweeney M. O., Yee R., Marinchak R., et al. . (2003). Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation 107, 1614–1619. 10.1161/01.CIR.0000057981.70380.45
    1. Go A. S., Hylek E. M., Phillips K. A., Chang Y., Henault L. E., Selby J. V., et al. . (2001). Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285, 2370–2375. 10.1001/jama.285.18.2370
    1. Haas S., Wohlgemuth S., Echizen I., Sonehara N., Muller G. (2011). Aspects of privacy for electronic health records. Int. J. Med. Inform. 80, e26–e31. 10.1016/j.ijmedinf.2010.10.001
    1. Halligan S. C., Gersh B. J., Brown R. D., Jr., Rosales A. G., Munger T. M., Shen W. K., et al. . (2004). The natural history of lone atrial flutter. Ann. Intern. Med. 140, 265–268. 10.7326/0003-4819-140-4-200402170-00008
    1. Healey J. S., Connolly S. J., Gold M. R., Israel C. W., Van Gelder I. C., Capucci A., et al. . (2012). Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 366, 120–129. 10.1056/NEJMoa1105575
    1. Heeringa J., van der Kuip D. A., Hofman A., Kors J. A., van Herpen G., Stricker B. H., et al. . (2006). Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27, 949–953. 10.1093/eurheartj/ehi825
    1. Jensen A. S., Idorn L., Nørager B., Vejlstrup N., Sondergaard L. (2015). Anticoagulation in adults with congenital heart disease: the who, the when and the how? Heart 101, 424–429. 10.1136/heartjnl-2014-305576
    1. Kannel W. B., Wolf P. A., Benjamin E. J., Levy D. (1998). Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am. J. Cardiol. 82, 2N–9N. 10.1016/S0002-9149(98)00583-9
    1. Krahn A. D., Manfreda J., Tate R. B., Mathewson F. A., Cuddy T. E. (1995). The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am. J. Med. 98, 476–484. 10.1016/S0002-9343(99)80348-9
    1. Lip G. Y. (2013). Using the CHADS2 and CHA2DS2-VASc scores for stroke risk prediction as well as the identification of stroke outcomes and cardiac complications in patients with and without atrial fibrillation. Cerebrovasc. Dis. 36, 281–282. 10.1159/000355981
    1. Lloyd-Jones D. M., Wang T. J., Leip E. P., Larson M. G., Levy D., Vasan R. S., et al. . (2004). Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110, 1042–1046. 10.1161/01.CIR.0000140263.20897.42
    1. Mentz R. J., Chung M. J., Gheorghiade M., Pang P. S., Kwasny M. J., Ambrosy A. P., et al. . (2012). Atrial fibrillation or flutter on initial electrocardiogram is associated with worse outcomes in patients admitted for worsening heart failure with reduced ejection fraction: findings from the EVEREST Trial. Am. Heart J. 164, 884–892.e882. 10.1016/j.ahj.2012.09.011
    1. Mittal S., Movsowitz C., Steinberg J. S. (2011). Ambulatory external electrocardiographic monitoring: focus on atrial fibrillation. J. Am. Coll. Cardiol. 58, 1741–1749. 10.1016/j.jacc.2011.07.026
    1. Parikh M. G., Aziz Z., Krishnan K., Madias C., Trohman R. G. (2012). Usefulness of transesophageal echocardiography to confirm clinical utility of CHA2DS2-VASc and CHADS2 scores in atrial flutter. Am. J. Cardiol. 109, 550–555. 10.1016/j.amjcard.2011.10.007
    1. Pisters R., Lane D. A., Nieuwlaat R., de Vos C. B., Crijns H. J., Lip G. Y. (2010). A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 138, 1093–1100. 10.1378/chest.10-0134
    1. Reinier K., Marijon E., Uy-Evanado A., Teodorescu C., Narayanan K., Chugh H., et al. . (2014). The association between atrial fibrillation and sudden cardiac death: the relevance of heart failure. JACC Heart Fail. 2, 221–227. 10.1016/j.jchf.2013.12.006
    1. Rodriguez F. H., Moodie D. S., Neeland M., Adams G. J., Snyder C. S. (2012). Identifying arrhythmias in adults with congenital heart disease by 24-h ambulatory electrocardiography. Pediatr. Cardiol. 33, 591–595. 10.1007/s00246-012-0183-1
    1. Rosenberg M. A., Samuel M., Thosani A., Zimetbaum P. J. (2013). Use of a noninvasive continuous monitoring device in the management of atrial fibrillation: a pilot study. Pacing Clin. Electrophysiol. 36, 328–333. 10.1111/pace.12053
    1. Sanna T., Diener H. C., Passman R. S., Di Lazzaro V., Bernstein R. A., Morillo C. A., et al. . (2014). Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 370, 2478–2486. 10.1056/NEJMoa1313600
    1. Schreiber D., Sattar A., Drigalla D., Higgins S. (2014). Ambulatory cardiac monitoring for discharged emergency department patients with possible cardiac arrhythmias. West. J. Emerg. Med. 15, 194–198. 10.5811/westjem.2013.11.18973
    1. Schuchert A., Behrens G., Meinertz T. (1999). Impact of long-term ECG recording on the detection of paroxysmal atrial fibrillation in patients after an acute ischemic stroke. Pacing Clin. Electrophysiol. 22, 1082–1084. 10.1111/j.1540-8159.1999.tb00574.x
    1. Sherman D. G., Goldman L., Whiting R. B., Jurgensen K., Kaste M., Easton J. D. (1984). Thromboembolism in patients with atrial fibrillation. Arch. Neurol. 41, 708–710. 10.1001/archneur.1984.04050180030011
    1. Shinbane J. S., Merkert M., Fogoros R., Mehta V., Cao M., Saxon L. A. (2013). Wearable wireless arrhythmia detection patches: diagnostic arrhythmia yield, time to first arrhythmia, and patient compliance. Heart Rhythm. 10, 5S:S305.
    1. Shinbane J. S., Wood M. A., Jensen D. N., Ellenbogen K. A., Fitzpatrick A. P., Scheinman M. M. (1997). Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J. Am. Coll. Cardiol. 29, 709–715. 10.1016/S0735-1097(96)00592-X
    1. Sparks P. B., Jayaprakash S., Mond H. G., Vohra J. K., Grigg L. E., Kalman J. M. (1999). Left atrial mechanical function after brief duration atrial fibrillation. J. Am. Coll. Cardiol. 33, 342–349. 10.1016/S0735-1097(98)00585-3
    1. Stoddard M. F. (2000). Risk of thromboembolism in acute atrial fibrillation or atrial flutter. Echocardiography 17, 393–405. 10.1111/j.1540-8175.2000.tb01155.x
    1. Takemoto M., Yoshimura H., Ohba Y., Matsumoto Y., Yamamoto U., Mohri M., et al. . (2005). Radiofrequency catheter ablation of premature ventricular complexes from right ventricular outflow tract improves left ventricular dilation and clinical status in patients without structural heart disease. J. Am. Coll. Cardiol. 45, 1259–1265. 10.1016/j.jacc.2004.12.073
    1. Tayal A. H., Tian M., Kelly K. M., Jones S. C., Wright D. G., Singh D., et al. . (2008). Atrial fibrillation detected by mobile cardiac outpatient telemetry in cryptogenic TIA or stroke. Neurology 71, 1696–1701. 10.1212/01.wnl.0000325059.86313.31
    1. Thambidorai S. K., Murray R. D., Parakh K., Shah T. K., Black I. W., Jasper S. E., et al. . (2005). Utility of transesophageal echocardiography in identification of thrombogenic milieu in patients with atrial fibrillation (an ACUTE ancillary study). Am. J. Cardiol. 96, 935–941. 10.1016/j.amjcard.2005.05.051
    1. Turakhia M. P., Hoang D. D., Zimetbaum P., Miller J. D., Froelicher V. F., Kumar U. N., et al. . (2013). Diagnostic utility of a novel leadless arrhythmia monitoring device. Am. J. Cardiol. 112, 520–524. 10.1016/j.amjcard.2013.04.017
    1. Walsh E. P. (2014). Sudden death in adult congenital heart disease: risk stratification in 2014. Heart Rhythm 11, 1735–1742. 10.1016/j.hrthm.2014.07.021
    1. Walsh E. P., Cecchin F. (2007). Arrhythmias in adult patients with congenital heart disease. Circulation 115, 534–545. 10.1161/CIRCULATIONAHA.105.592410
    1. Weitzman E. R., Kaci L., Mandl K. D. (2009). Acceptability of a personally controlled health record in a community-based setting: implications for policy and design. J. Med. Internet Res. 11, e14. 10.2196/jmir.1187
    1. Wolf P. A., Dawber T. R., Thomas H. E., Jr., Kannel W. B. (1978). Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology 28, 973–977. 10.1212/WNL.28.10.973
    1. You J. J., Singer D. E., Howard P. A., Lane D. A., Eckman M. H., Fang M. C., et al. . (2012). Antithrombotic therapy for atrial fibrillation: antithrombotic therapy and prevention of thrombosis, 9th ed: american college of chest physicians evidence-based clinical practice guidelines. Chest 141, e531S–e575S. 10.1378/chest.11-2304
    1. Zimetbaum P., Goldman A. (2010). Ambulatory arrhythmia monitoring: choosing the right device. Circulation 122, 1629–1636. 10.1161/CIRCULATIONAHA.109.925610
    1. Zipes D. P. (1997). Atrial fibrillation. A tachycardia-induced atrial cardiomyopathy. Circulation 95, 562–564. 10.1161/01.CIR.95.3.562

Source: PubMed

3
購読する