Posteroanterior Cervical Transcutaneous Spinal Cord Stimulation: Interactions with Cortical and Peripheral Nerve Stimulation

Jaclyn R Wecht, William M Savage, Grace O Famodimu, Gregory A Mendez, Jonah M Levine, Matthew T Maher, Joseph P Weir, Jill M Wecht, Jason B Carmel, Yu-Kuang Wu, Noam Y Harel, Jaclyn R Wecht, William M Savage, Grace O Famodimu, Gregory A Mendez, Jonah M Levine, Matthew T Maher, Joseph P Weir, Jill M Wecht, Jason B Carmel, Yu-Kuang Wu, Noam Y Harel

Abstract

Transcutaneous spinal cord stimulation (TSCS) has demonstrated potential to beneficially modulate spinal cord motor and autonomic circuitry. We are interested in pairing cervical TSCS with other forms of nervous system stimulation to enhance synaptic plasticity in circuits serving hand function. We use a novel configuration for cervical TSCS in which the anode is placed anteriorly over ~C4-C5 and the cathode posteriorly over ~T2-T4. We measured the effects of single pulses of TSCS paired with single pulses of motor cortex or median nerve stimulation timed to arrive at the cervical spinal cord at varying intervals. In 13 participants with and 15 participants without chronic cervical spinal cord injury, we observed that subthreshold TSCS facilitates hand muscle responses to motor cortex stimulation, with a tendency toward greater facilitation when TSCS is timed to arrive at cervical synapses simultaneously or up to 10 milliseconds after cortical stimulus arrival. Single pulses of subthreshold TSCS had no effect on the amplitudes of median H-reflex responses or F-wave responses. These findings support a model in which TSCS paired with appropriately timed cortical stimulation has the potential to facilitate convergent transmission between descending motor circuits, segmental afferents, and spinal motor neurons serving the hand. Studies with larger numbers of participants and repetitively paired cortical and spinal stimulation are needed.

Keywords: cervical spinal cord injury; motor evoked potentials; spinal cord stimulation.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study aside from comments during the peer review process prior to study initiation. The funder had no role in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Resting thresholds are higher in SCI participants for TMS but not TSCS. Resting motor threshold (RMT) for the abductor pollicis brevis (in two SCI participants, the first dorsal interosseous). Note that two SCI participants had unobtainable transcranial magnetic stimulation (TMS) responses, whereas all participants responded to transcutaneous spinal cord stimulation (TSCS). Hence, the asterisk next to “13” in the legend. MSO%, percent of maximal stimulator output. mA, milliamperes. Mean and SEM shown. *, p = 0.024.
Figure 2
Figure 2
Subthreshold TSCS acutely facilitates TMS-evoked potentials. Suprathreshold (120%) TMS and subthreshold TSCS were given alone or in combination as depicted in Table 1. Response amplitudes were compared to the response to TMS alone (0). Synapse delay represents the time of TSCS pulse arrival at cervical motor neurons relative to test pulse arrival. Negative numbers indicate TSCS pulse arrival before test pulse arrival. (A). Representative waves from participant #29. (B). Effect of conditioning TSCS at 90% RMT. Black line (grey shading) indicates mean (SEM) for AB participants. Red line (pink shading) indicates mean (SEM) for SCI participants.
Figure 3
Figure 3
Suprathreshold TSCS collides with or facilitates F-wave responses depending on timing. Supramaximal median nerve stimulation was delivered to generate F-wave responses. Conditioning TSCS pulses at 175% of RMT were timed to arrive at cervical motor neurons either 10 ms prior to or simultaneously with retrograde median nerve pulse arrival.

References

    1. Harkema S., Gerasimenko Y., Hodes J., Burdick J., Angeli C., Chen Y., Ferreira C., Willhite A., Rejc E., Grossman R.G., et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet. 2011;377:1938–1947. doi: 10.1016/S0140-6736(11)60547-3.
    1. Angeli C.A., Edgerton V.R., Gerasimenko Y.P., Harkema S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137:1394–1409. doi: 10.1093/brain/awu038.
    1. Angeli C.A., Boakye M., Morton R.A., Vogt J., Benton K., Chen Y., Ferreira C.K., Harkema S.J. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N. Engl. J. Med. 2018;379:1244–1250. doi: 10.1056/NEJMoa1803588.
    1. Gad P., Lee S., Terrafranca N., Zhong H., Turner A., Gerasimenko Y., Edgerton V.R. Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. J. Neurotrauma. 2018;35:2145–2158. doi: 10.1089/neu.2017.5461.
    1. Inanici F., Samejima S., Gad P., Edgerton V.R., Hofstetter C.P., Moritz C.T. Transcutaneous Electrical Spinal Stimulation Promotes Long-Term Recovery of Upper Extremity Function in Chronic Tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:1272–1278. doi: 10.1109/TNSRE.2018.2834339.
    1. Inanici F., Brighton L.N., Samejima S., Hofstetter C.P., Moritz C.T. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function after Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021;29:310–319. doi: 10.1109/TNSRE.2021.3049133.
    1. Hofstoetter U.S., Krenn M., Danner S.M., Hofer C., Kern H., McKay W.B., Mayr W., Minassian K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif. Organs. 2015;39:E176–E186. doi: 10.1111/aor.12615.
    1. Gerasimenko Y.P., Lu D.C., Modaber M., Zdunowski S., Gad P., Sayenko D.G., Morikawa E., Haakana P., Ferguson A., Roy R.R., et al. Noninvasive Reactivation of Motor Descending Control after Paralysis. J. Neurotrauma. 2015;32:1968–1980. doi: 10.1089/neu.2015.4008.
    1. Minassian K., Hofstoetter U.S., Danner S.M., Mayr W., Bruce J.A., McKay W.B., Tansey K.E. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord–Injured Individuals. Neurorehabilit. Neural Repair. 2016;30:233–243. doi: 10.1177/1545968315591706.
    1. Milosevic M., Masugi Y., Sasaki A., Sayenko D.G., Nakazawa K. On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects. J. Neurophysiol. 2019;121:1672–1679. doi: 10.1152/jn.00802.2018.
    1. Wu Y.-K., Levine J.M., Wecht J.R., Maher M.T., Limonta J.M., Saeed S., Santiago T.M., Bailey E., Kastuar S., Guber K.S., et al. Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots. Clin. Neurophysiol. 2020;131:451–460. doi: 10.1016/j.clinph.2019.11.056.
    1. Formento E., Minassian K., Wagner F., Mignardot J.B., Le Goff-Mignardot C.G., Rowald A., Bloch J., Micera S., Capogrosso M., Courtine G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 2018;21:1728–1741. doi: 10.1038/s41593-018-0262-6.
    1. Minassian K., Persy I., Rattay F., Pinter M., Kern H., Dimitrijevic M. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum. Mov. Sci. 2007;26:275–295. doi: 10.1016/j.humov.2007.01.005.
    1. Gerasimenko Y., Gorodnichev R., Machueva E., Pivovarova E., Semyenov D., Savochin A., Roy R.R., Edgerton V.R. Novel and Direct Access to the Human Locomotor Spinal Circuitry. J. Neurosci. 2010;30:3700–3708. doi: 10.1523/JNEUROSCI.4751-09.2010.
    1. Mishra A.M., Pal A., Gupta D., Carmel J.B. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses. J. Physiol. 2017;595:6953–6968. doi: 10.1113/JP274663.
    1. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009;120:2008–2039. doi: 10.1016/j.clinph.2009.08.016.
    1. Rossi S., Hallett M., Rossini P.M., Pascual-Leone A. Screening questionnaire before TMS: An update. Clin. Neurophysiol. 2011;122:1686. doi: 10.1016/j.clinph.2010.12.037.
    1. Robinson L.R., Jantra P., MacLean I.C. Central motor conduction times using transcranial stimulation and F Wave latencies. Muscle Nerve. 1988;11:174–180. doi: 10.1002/mus.880110214.
    1. Bunday K.L., Tazoe T., Rothwell J.C., Perez M.A. Subcortical Control of Precision Grip after Human Spinal Cord Injury. J. Neurosci. 2014;34:7341–7350. doi: 10.1523/JNEUROSCI.0390-14.2014.
    1. Bunday K.L., Perez M.A. Motor Recovery after Spinal Cord Injury Enhanced by Strengthening Corticospinal Synaptic Transmission. Curr. Biol. 2012;22:2355–2361. doi: 10.1016/j.cub.2012.10.046.
    1. Mills K., Murray N. Electrical stimulation over the human vertebral column: Which neural elements are excited? Electroencephalogr. Clin. Neurophysiol. 1986;63:582–589. doi: 10.1016/0013-4694(86)90145-8.
    1. Stefan K., Kunesch E., Cohen L.G., Benecke R., Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–584. doi: 10.1093/brain/123.3.572.
    1. Dixon L., Ibrahim M.M., Santora D., Knikou M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J. Neurophysiol. 2016;116:904–916. doi: 10.1152/jn.00259.2016.
    1. Harel N.Y., Carmel J.B. Paired Stimulation to Promote Lasting Augmentation of Corticospinal Circuits. Neural Plast. 2016;2016:7043767. doi: 10.1155/2016/7043767.
    1. Roy F.D., Bosgra D., Stein R.B. Interaction of transcutaneous spinal stimulation and transcranial magnetic stimulation in human leg muscles. Exp. Brain Res. 2014;232:1717–1728. doi: 10.1007/s00221-014-3864-6.
    1. Ziemann U., Ilić T.V., Alle H., Meintzschel F. Estimated magnitude and interactions of cortico-motoneuronal and Ia afferent input to spinal motoneurones of the human hand. Neurosci. Lett. 2004;364:48–52. doi: 10.1016/j.neulet.2004.04.020.
    1. Cortes M., Thickbroom G.W., Valls-Sole J., Pascual-Leone A., Edwards D.J. Spinal associative stimulation: A non-invasive stimulation paradigm to modulate spinal excitability. Clin. Neurophysiol. 2011;122:2254–2259. doi: 10.1016/j.clinph.2011.02.038.
    1. Taylor J.L., Martin P.G. Voluntary Motor Output Is Altered by Spike-Timing-Dependent Changes in the Human Corticospinal Pathway. J. Neurosci. 2009;29:11708–11716. doi: 10.1523/JNEUROSCI.2217-09.2009.
    1. D’amico J.M., Dongés S.C., Taylor J.L. Paired corticospinal-motoneuronal stimulation increases maximal voluntary acti-vation of human adductor pollicis. J. Neurophysiol. 2018;119:369–376. doi: 10.1152/jn.00919.2016.
    1. Urbin M.A., Ozdemir R.A., Tazoe T., Perez M.A. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury. J. Neurophysiol. 2017;118:2171–2180. doi: 10.1152/jn.00111.2017.
    1. Shulga A., Lioumis P., Kirveskari E., Savolainen S., Mäkelä J.P., Ylinen A. The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation. J. Neurosci. Methods. 2015;242:112–117. doi: 10.1016/j.jneumeth.2015.01.012.
    1. Sharpe A.N., Jackson A. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J. Neural Eng. 2014;11:016005. doi: 10.1088/1741-2560/11/1/016005.
    1. Jackson A., Zimmermann J. Neural interfaces for the brain and spinal cord—Restoring motor function. Nat. Rev. Neurol. 2012;8:690–699. doi: 10.1038/nrneurol.2012.219.
    1. Mercier C., Roosink M., Bouffard J., Bouyer L. Promoting Gait Recovery and Limiting Neuropathic Pain After Spinal Cord Injury. Neurorehabilit. Neural Repair. 2017;31:315–322. doi: 10.1177/1545968316680491.
    1. Yang Q., Ramamurthy A., Lall S., Santos J., Ratnadurai-Giridharan S., Lopane M., Zareen N., Alexander H., Ryan D., Martin J.H., et al. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats. Exp. Neurol. 2019;320:112962. doi: 10.1016/j.expneurol.2019.112962.
    1. Zareen N., Shinozaki M., Ryan D., Alexander H., Amer A., Truong D., Khadka N., Sarkar A., Naeem S., Bikson M., et al. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Exp. Neurol. 2017;297:179–189. doi: 10.1016/j.expneurol.2017.08.004.
    1. Pal A., Park H., Ramamurthy A., Asan S., Bethea T., Johnkutty M., Carmel J. Paired motor cortex and spinal cord epidural stimulation strengthens sensorimotor connections and improves forelimb function after cervical spinal cord injury in rats. bioRxiv. 2020 doi: 10.1101/2020.12.07.398289.
    1. Ting W.K.-C., Huot-Lavoie M., Ethier C. Paired Associative Stimulation Fails to Induce Plasticity in Freely Behaving Intact Rats. eNeuro. 2020;7 doi: 10.1523/ENEURO.0396-19.2020.
    1. Kumru H., Rodríguez-Cañón M., Edgerton V., García L., Flores Á., Soriano I., Opisso E., Gerasimenko Y., Navarro X., García-Alías G., et al. Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study. J. Clin. Med. 2021;10:3278. doi: 10.3390/jcm10153278.
    1. Thickbroom G.W., Byrnes M.L., Edwards D., Mastaglia F.L. Repetitive paired-pulse TMS at I-wave periodicity markedly increases corticospinal excitability: A new technique for modulating synaptic plasticity. Clin. Neurophysiol. 2006;117:61–66. doi: 10.1016/j.clinph.2005.09.010.
    1. Vastano R., Perez M.A. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury. J. Neurophysiol. 2020;123:454–461. doi: 10.1152/jn.00367.2019.
    1. Thomas C.K., Häger C.K., Klein C.S. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury. J. Neurophysiol. 2017;117:684–691. doi: 10.1152/jn.00676.2016.
    1. Espiritu M.G., Lin C.S.-Y., Burke D. Motoneuron excitability and the F wave. Muscle Nerve. 2003;27:720–727. doi: 10.1002/mus.10388.
    1. Minassian K., Persy I., Rattay F., Dimitrijevic M.R., Hofer C., Kern H. Posterior root–muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve. 2007;35:327–336. doi: 10.1002/mus.20700.
    1. Murray L.M., Knikou M. Repeated cathodal transspinal pulse and direct current stimulation modulate cortical and corticospinal excitability differently in healthy humans. Exp. Brain Res. 2019;237:1841–1852. doi: 10.1007/s00221-019-05559-2.
    1. Holtz K.A., Lipson R., Noonan V.K., Kwon B.K., Mills P.B. Prevalence and Effect of Problematic Spasticity after Traumatic Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2017;98:1132–1138. doi: 10.1016/j.apmr.2016.09.124.
    1. Sköld C., Levi R., Seiger Å. Spasticity after traumatic spinal cord injury: Nature, severity, and location. Arch. Phys. Med. Rehabil. 1999;80:1548–1557. doi: 10.1016/S0003-9993(99)90329-5.
    1. Hofstoetter U.S., McKay W.B., Tansey K.E., Mayr W., Kern H., Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 2014;37:202–211. doi: 10.1179/2045772313Y.0000000149.
    1. Hofstoetter U.S., Freundl B., Danner S.M., Krenn M.J., Mayr W., Binder H., Minassian K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J. Neurotrauma. 2020;37:481–493. doi: 10.1089/neu.2019.6588.
    1. Goldsworthy M., Hordacre B., Ridding M. Minimum number of trials required for within- and between-session reliability of TMS measures of corticospinal excitability. Neuroscience. 2016;320:205–209. doi: 10.1016/j.neuroscience.2016.02.012.

Source: PubMed

3
購読する