Modulating Applied Task Performance via Transcranial Electrical Stimulation

Tad T Brunyé, Erika K Hussey, Eduardo B Fontes, Nathan Ward, Tad T Brunyé, Erika K Hussey, Eduardo B Fontes, Nathan Ward

Abstract

Basic and applied research are increasingly adopting transcranial electrical stimulation (tES) for modulating perceptual, cognitive, affective, and motor processes. Industry and defense applications of tES hold potential for accelerating training and knowledge acquisition and sustaining work-related performance in the face of fatigue, workload, and stress. This mini-review article describes the promises and perils of tES, and reviews research testing its influence on two broad applied areas: sustaining and dividing attention, and operating in virtual environments. Also included is a discussion of challenges related to viable mechanistic explanations for tES effectiveness, attempts at replication and consideration of null results, and the potential importance of individual differences in predicting tES influences on human performance. Finally, future research directions are proposed to address these challenges and help develop a fuller understanding of tES viability for enhancing real-world performance.

Keywords: driving; multitasking; navigation; neuroergonomics; transcranial electrical stimulation; vigilance; virtual environments.

References

    1. Antal A., Ambrus G. G., Chaieb L. (2014). Toward unraveling reading-related modulations of tdcs-induced neuroplasticity in the human visual cortex. Front. Psychol. 5:642. 10.3389/fpsyg.2014.00642
    1. Beeli G., Casutt G., Baumgartner T., Jäncke L. (2008a). Modulating presence and impulsiveness by external stimulation of the brain. Behav. Brain Funct. 4:33. 10.1186/1744-9081-4-33
    1. Beeli G., Koeneke S., Gasser K., Jäncke L. (2008b). Brain stimulation modulates driving behavior. Behav. Brain Funct. 4:34. 10.1186/1744-9081-4-34
    1. Berryhill M. E., Jones K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 521, 148–151. 10.1016/j.neulet.2012.05.074
    1. Bestmann S., de Berker A. O., Bonaiuto J. (2015). Understanding the behavioural consequences of noninvasive brain stimulation. Trends Cogn. Sci. 19, 13–20. 10.1016/j.tics.2014.10.003
    1. Bikson M., Name A., Rahman A. (2013). Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front. Hum. Neurosci. 7:688. 10.3389/fnhum.2013.00688
    1. Bikson M., Rahman A., Datta A., Fregni F., Merabet L. (2012). High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation 15, 306–315. 10.1111/j.1525-1403.2012.00481.x
    1. Boccia M., Sulpizio V., Nemmi F., Guariglia C., Galati G. (2017). Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity. Brain Struct. Funct. 222, 1945–1957. 10.1007/s00429-016-1318-6
    1. Breckel T. P. K., Giessing C., Thiel C. M. (2011). Impact of brain networks involved in vigilance on processing irrelevant visual motion. Neuroimage 55, 1754–1762. 10.1016/j.neuroimage.2011.01.025
    1. Brotchie P. R., Andersen R. A., Snyder L. H., Goodman S. J. (1995). Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375, 232–235. 10.1038/375232a0
    1. Brunoni A. R., Vanderhasselt M.-A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 86, 1–9. 10.1016/j.bandc.2014.01.008
    1. Brunyé T. T. (2018). Modulating spatial processes and navigation via transcranial electrical stimulation: a mini review. Front. Hum. Neurosci. 11:649. 10.3389/fnhum.2017.00649
    1. Brunyé T. T., Holmes A., Cantelon J., Eddy M. D., Gardony A. L., Mahoney C. R., et al. . (2014). Direct current brain stimulation enhances navigation efficiency in individuals with low sense of direction. Neuroreport 25, 1175–1179. 10.1097/wnr.0000000000000214
    1. Brunyé T. T., Hussey E. K., Gardony A. L., Holmes A., Taylor H. A. (2018a). Targeted right medial temporal lobe tDCS and associative spatial and non-spatial memory. J. Cogn. Enhanc. 3, 287–297. 10.1007/s41465-018-0072-5
    1. Brunyé T. T., Smith A. M., Horner C. B., Thomas A. K. (2018b). Verbal long-term memory is enhanced by retrieval practice but impaired by prefrontal direct current stimulation. Brain Cogn. 128, 80–88. 10.1016/j.bandc.2018.09.008
    1. Brunyé T. T., Moran J. M., Cantelon J., Holmes A., Eddy M. D., Mahoney C. R., et al. . (2015). Increasing breadth of semantic associations with left frontopolar direct current brain stimulation: a role for individual differences. Neuroreport 26, 296–301. 10.1097/wnr.0000000000000348
    1. Burgess N. (2008). Spatial cognition and the brain. Ann. N Y Acad. Sci. 1124, 77–97. 10.1196/annals.1440.002
    1. Byrne P., Becker S., Burgess N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375. 10.1037/0033-295x.114.2.340
    1. Calhoun V. D., Pekar J. J., McGinty V. B., Adali T., Watson T. D., Pearlson G. D. (2002). Different activation dynamics in multiple neural systems during simulated driving. Hum. Brain Mapp. 16, 158–167. 10.1002/hbm.10066
    1. Chhatbar P. Y., Feng W. (2015). Data synthesis in meta-analysis may conclude differently on cognitive effect from transcranial direct current stimulation. Brain Stimul. 8, 974–976. 10.1016/j.brs.2015.06.001
    1. Clark V. P., Coffman B. A., Mayer A. R., Weisend M. P., Lane T. D. R., Calhoun V. D., et al. . (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage 59, 117–128. 10.1016/j.neuroimage.2010.11.036
    1. Coull J. T., Frackowiak R. S. J., Frith C. D. (1998). Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36, 1325–1334. 10.1016/s0028-3932(98)00035-9
    1. Crivelli D., Balconi M. (2017). The agent brain: a review of non-invasive brain stimulation studies on sensing agency. Front. Behav. Neurosci. 11:229. 10.3389/fnbeh.2017.00229
    1. Davies D. R., Parasuraman R. (1982). The Psychology of Vigilance. London: Academic Press.
    1. Dockery C. A., Hueckel-Weng R., Birbaumer N., Plewnia C. (2009). Enhancement of planning ability by transcranial direct current stimulation. J. Neurosci. 29, 7271–7277. 10.1523/JNEUROSCI.0065-09.2009
    1. Dux P. E., Ivanoff J., Asplund C. L., Marois R. (2006). Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron 52, 1109–1120. 10.1016/j.neuron.2006.11.009
    1. Dux P. E., Tombu M. N., Harrison S., Rogers B. P., Tong F., Marois R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron 63, 127–138. 10.1016/j.neuron.2009.06.005
    1. Ericsson A. K., Charness N., Feltovitch P. J., Hoffman R. R. (2006). The Cambridge Handbook of Expertise and Expert Performance. Cambridge: Cambridge University Press.
    1. FDA (2016). General Wellness: Policy for Low Risk Devices Draft Guidance for Industry and Food and Drug Administration Staff. Silver Spring, MD: U.S. Department of Health and Human Services Food; Available online at: [Accessed March 25, 2019].
    1. Filmer H. L., Dux P. E., Mattingley J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 37, 742–753. 10.1016/j.tins.2014.08.003
    1. Filmer H. L., Mattingley J. B., Dux P. E. (2013a). Improved multitasking following prefrontal tDCS. Cortex 49, 2845–2852. 10.1016/j.cortex.2013.08.015
    1. Filmer H. L., Mattingley J. B., Marois R., Dux P. E. (2013b). Disrupting prefrontal cortex prevents performance gains from sensory-motor training. J. Neurosci. 33, 18654–18660. 10.1523/JNEUROSCI.2019-13.2013
    1. Fischer D. B., Fried P. J., Ruffini G., Ripolles O., Salvador R., Banus J., et al. . (2017). Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage 157, 34–44. 10.1016/j.neuroimage.2017.05.060
    1. Hampstead B. M., Brown G. S., Hartley J. F. (2014). Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation. Brain Stimul. 7, 314–324. 10.1016/j.brs.2013.12.006
    1. Harvey C. D., Coen P., Tank D. W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68. 10.1038/nature10918
    1. Helton W. S., Hollander T. D., Warm J. S., Tripp L. D., Parsons K., Matthews G., et al. . (2007). The abbreviated vigilance task and cerebral hemodynamics. J. Clin. Exp. Neuropsychol. 29, 545–552. 10.1080/13803390600814757
    1. Hill A. T., Fitzgerald P. B., Hoy K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 9, 197–208. 10.1016/j.brs.2015.10.006
    1. Hogeveen J., Grafman J., Aboseria M., David A., Bikson M., Hauner K. K. (2016). Effects of high-definition and conventional tDCS on response inhibition. Brain Stimul. 9, 720–729. 10.1016/j.brs.2016.04.015
    1. Horikawa E., Okamura N., Tashiro M., Sakurada Y., Maruyama M., Arai H., et al. . (2005). The neural correlates of driving performance identified using positron emission tomography. Brain Cogn. 58, 166–171. 10.1016/j.bandc.2004.10.002
    1. Horvath J. C., Forte J. D., Carter O. (2015a). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66, 213–236. 10.1016/j.neuropsychologia.2014.11.021
    1. Horvath J. C., Forte J. D., Carter O. (2015b). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 8, 535–550. 10.1016/j.brs.2015.01.400
    1. Hsu W. Y., Zanto T. P., Gazzaley A. (2018). Parametric effects of transcranial alternating current stimulation on multitasking performance. Brain Stimul. 12, 73–83. 10.1016/j.brs.2018.10.010
    1. Hsu W. Y., Zanto T. P., van Schouwenburg M. R., Gazzaley A. (2017). Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation. PLoS One 12:e0178579. 10.1371/journal.pone.0178579
    1. Hussey E. K., Ward N., Christianson K., Kramer A. F. (2015). Language and memory improvements following tDCS of left lateral prefrontal cortex. PLoS One 10:e0141417. 10.1371/journal.pone.0141417
    1. Iyer M. B., Mattu U., Grafman J., Lomarev M., Sato S., Wassermann E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64, 872–875. 10.1212/01.wnl.0000152986.07469.e9
    1. Jacobson L., Koslowsky M., Lavidor M. (2012). TDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp. Brain Res. 216, 1–10. 10.1007/s00221-011-2891-9
    1. Jeong M., Tashiro M., Singh L. N., Yamaguchi K., Horikawa E., Miyake M., et al. . (2006). Functional brain mapping of actual car-driving using [18F]FDG- PET. Ann. Nucl. Med. 20, 623–628. 10.1007/bf02984660
    1. Jiang Y., Kanwisher N. (2003). Common neural substrates for response selection across modalities and mapping paradigms. J. Cogn. Neurosci. 15, 1080–1094. 10.1162/089892903322598067
    1. Jones K. T., Gözenman F., Berryhill M. E. (2015). The strategy and motivational influences on the beneficial effect of neurostimulation: a tDCS and fNIRS study. Neuroimage 105, 238–247. 10.1016/j.neuroimage.2014.11.012
    1. Just M. A., Keller T. A., Cynkar J. (2008). A decrease in brain activation associated with driving when listening to someone speak. Brain Res. 1205, 70–80. 10.1016/j.brainres.2007.12.075
    1. Kasten F. H., Dowsett J., Herrmann C. S. (2016). Sustained aftereffect of α-tACS lasts up to 70 min after stimulation. Front. Hum. Neurosci. 10:245. 10.3389/fnhum.2016.00245
    1. Koechlin E., Summerfield C. (2007). An information theoretical approach to prefrontal executive function. Trends Cogn. Sci. 11, 229–235. 10.1016/j.tics.2007.04.005
    1. Lesgold A., Rubinson H., Feltovich P., Glaser R., Klopfer D., Wang Y. (1988). “Expertise in a complex skill: diagnosing x-ray pictures,” in The Nature of Expertise, eds Chi M. T. H., Glaser R., Farr M. J. (Hillsdale, NJ: Lawrence Erlbaum Associates; ), 311–342.
    1. Loffler B. S., Stecher H. I., Fudickar S., de Sordi D., Otto-Sobotka F., Hein A., et al. . (2018). Counteracting the slowdown of reaction times in a vigilance experiment with 40-Hz transcranial alternating current stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 2053–2061. 10.1109/tnsre.2018.2869471
    1. MacDonald A. W., III., Cohen J. D., Stenger V. A., Carter C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838. 10.1126/science.288.5472.1835
    1. Mackworth N. H. (1948). The breakdown of vigilance during prolonged visual search. Q. J. Exp. Psychol. 1, 6–21. 10.1080/17470214808416738
    1. Marois R., Ivanoff J. (2005). Capacity limits of information processing in the brain. Trends Cogn. Sci. 9, 296–305. 10.1016/j.tics.2005.04.010
    1. Massetti T., Crocetta T. B., Silva T. D. D., Trevizan I. L., Arab C., Caromano F. A., et al. . (2017). Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review. Disabil. Rehabil. Assist. Technol. 12, 551–559. 10.1080/17483107.2016.1230152
    1. Mauri P., Miniussi C., Balconi M., Brignani D. (2015). Bursts of transcranial electrical stimulation increase arousal in a continuous performance test. Neuropsychologia 74, 127–136. 10.1016/j.neuropsychologia.2015.03.006
    1. McIntire L. K., McKinley R. A., Goodyear C., Nelson J. M. (2014). A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness. Brain Stimul. 7, 499–507. 10.1016/j.brs.2014.04.008
    1. McKendrick R., Parasuraman R., Ayaz H. (2015). Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Front. Syst. Neurosci. 9:27. 10.3389/fnsys.2015.00027
    1. McKinley R. A., McIntire L., Bridges N., Goodyear C., Bangera N. B., Weisend M. P. (2013). Acceleration of image analyst training with transcranial direct current stimulation. Behav. Neurosci. 127, 936–946. 10.1037/a0034975
    1. Miniussi C., Harris J. A., Ruzzoli M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 37, 1702–1712. 10.1016/j.neubiorev.2013.06.014
    1. Molaee-Ardekani B., Márquez-Ruiz J., Merlet I., Leal-Campanario R., Gruart A., Sánchez-Campusano R., et al. . (2013). Effects of transcranial Direct Current Stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul. 6, 25–39. 10.1016/j.brs.2011.12.006
    1. Mulquiney P. G., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B. (2011). Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin. Neurophysiol. 122, 2384–2389. 10.1016/j.clinph.2011.05.009
    1. Nelson J. T., McKinley R. A., Golob E. J., Warm J. S., Parasuraman R. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage 85, 909–917. 10.1016/j.neuroimage.2012.11.061
    1. Nelson J. T., McKinley R. A., Phillips C., McIntire L. K., Goodyear C., Kreiner A., et al. . (2016). The effects of transcranial direct current stimulation (tDCS) on multitasking throughput capacity. Front. Hum. Neurosci. 10:589. 10.3389/fnhum.2016.00589
    1. Nikolin S., Lauf S., Loo C. K., Martin D. (2019). Effects of high-definition transcranial direct current stimulation (HD-tDCS) of the intraparietal sulcus and dorsolateral prefrontal cortex on working memory and divided attention. Front. Integr. Neurosci. 12:64. 10.3389/fnint.2018.00064
    1. Nikolin S., Loo C. K., Bai S., Dokos S., Martin D. M. (2015). Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage 117, 11–19. 10.1016/j.neuroimage.2015.05.019
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. . (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Schauenburg A., Lang N., Liebetanz D., Exner C., Paulus W., et al. . (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15, 619–626. 10.1162/089892903321662994
    1. Parasuraman R., McKinley R. A. (2014). Using noninvasive brain stimulation to accelerate learning and enhance human performance. Hum. Factors 56, 816–824. 10.1177/0018720814538815
    1. Pardo J. V., Fox P. T., Raichle M. E. (1991). Localization of a human system for sustained attention by positron emission tomography. Nature 349, 61–64. 10.1038/349061a0
    1. Pashler H. (1994). Dual-task interference in simple tasks: data and theory. Psychol. Bull. 116, 220–244. 10.1037//0033-2909.116.2.220
    1. Patel V. L., Arocha J., Zhang J. (2005). “Thinking and reasoning in medicine,” in The Cambridge Handbook of Thinking and Reasoning, eds Holyoak K. J., Morrison R. G. (Cambridge, UK: Cambridge University Press; ), 727–750.
    1. Paulus W. (2011). Transcranial electrical stimulation (tES—tDCS; tRNS, tACS) methods. Neuropsychol. Rehabil. 21, 602–617. 10.1080/09602011.2011.557292
    1. Pirulli C., Fertonani A., Miniussi C. (2013). The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul. 6, 683–689. 10.1016/j.brs.2012.12.005
    1. Rahman A., Reato D., Arlotti M., Gasca F., Datta A., Parra L. C., et al. . (2013). Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J. Physiol. 591, 2563–2578. 10.1113/jphysiol.2012.247171
    1. Reed T., Cohen Kadosh R. (2018). Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J. Inherit. Metab. Dis. 41, 1123–1130. 10.1007/s10545-018-0181-4
    1. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al. . (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U S A 106, 1590–1595. 10.1073/pnas.0805413106
    1. Rothwell J. C. (2012). Clinical applications of noninvasive electrical stimulation: problems and potential. Clin. EEG Neurosci. 43, 209–214. 10.1177/1550059412444973
    1. Ruohonen J., Karhu J. (2012). TDCS possibly stimulates glial cells. Clin. Neurophysiol. 123, 2006–2009. 10.1016/j.clinph.2012.02.082
    1. Sakai H., Uchiyama Y., Tanaka S., Sugawara S. K., Sadato N. (2014). Prefrontal transcranial direct current stimulation improves fundamental vehicle control abilities. Behav. Brain Res. 273, 57–62. 10.1016/j.bbr.2014.07.036
    1. Santarnecchi E., Brem A. K., Levenbaum E., Thompson T., Kadosh R. C., Pascual-Leone A. (2015). Enhancing cognition using transcranial electrical stimulation. Curr. Opin. Behav. Sci. 4, 171–178. 10.1016/j.cobeha.2015.06.003
    1. Sarkar A., Dowker A., Cohen Kadosh R. (2014). Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. J. Neurosci. 34, 16605–16610. 10.1523/JNEUROSCI.3129-14.2014
    1. Silva S., Basser P. J., Miranda P. C. (2008). Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clin. Neurophysiol. 119, 2405–2413. 10.1016/j.clinph.2008.07.248
    1. Slaby I., Holmes A., Moran J. M., Eddy M. D., Mahoney C. R., Taylor H. A., et al. . (2015). Direct current stimulation of the left temporoparietal junction modulates dynamic humor appreciation. Neuroreport 26, 988–993. 10.1097/wnr.0000000000000456
    1. Soekadar S. R., Herring J. D., McGonigle D. (2016). Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience. Neuroimage 140, 1–3. 10.1016/j.neuroimage.2016.08.020
    1. Spiers H. J., Maguire E. A. (2007). Neural substrates of driving behaviour. Neuroimage 36, 245–255. 10.1016/j.neuroimage.2007.02.032
    1. Strobach T., Antonenko D. (2017). tDCS-induced effects on executive functioning and their cognitive mechanisms: a review. J. Cogn. Enhanc. 1, 49–64. 10.1007/s41465-016-0004-1
    1. Strobach T., Soutschek A., Antonenko D., Flöel A., Schubert T. (2015). Modulation of executive control in dual tasks with transcranial direct current stimulation (tDCS). Neuropsychologia 68, 8–20. 10.1016/j.neuropsychologia.2014.12.024
    1. Tecchio F., Zappasodi F., Assenza G., Tombini M., Vollaro S., Barbati G., et al. . (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. J. Neurophysiol. 104, 1134–1140. 10.1152/jn.00661.2009
    1. Teo W. P., Muthalib M., Yamin S., Hendy A. M., Bramstedt K., Kotsopoulos E., et al. . (2016). Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation?—a narrative review of the literature. Front. Hum. Neurosci. 10:284. 10.3389/fnhum.2016.00284
    1. Uchiyama Y., Toyoda H., Sakai H., Shin D., Ebe K., Sadato N. (2012). Suppression of brain activity related to a car-following task with an auditory task: an fMRI study. Trans. Res. F Traffic Psychol. Behav. 15, 25–37. 10.1016/j.trf.2011.11.002
    1. Viana R. T., Laurentino G. E. C., Souza R. J. P., Fonseca J. B., Silva Filho E. M., Dias S. N., et al. . (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation 34, 437–446. 10.3233/NRE-141065
    1. Vogt B. A., Finch D. M., Olson C. R. (1992). Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2, 435–443. 10.1093/cercor/2.6.435-a
    1. Warm J. S., Parasuraman R. (2009). “Cerebral hemodynamics and vigilance,” in Neuroergonomics: The Brain at Work, eds Parasuraman R., Rizzo M. (Oxford: Oxford University Press; ), 146–158.
    1. Warm J. S., Parasuraman R., Matthews G. (2008). Vigilance requires hard mental work and is stressful. Hum. Factors 50, 433–441. 10.1518/001872008x312152
    1. Wiener M., Michaelis K., Thompson J. C. (2016). Functional correlates of likelihood and prior representations in a virtual distance task. Hum. Brain Mapp. 37, 3172–3187. 10.1002/hbm.23232
    1. Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. . (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127, 1031–1048. 10.1016/j.clinph.2015.11.012
    1. Wurzman R., Hamilton R. H., Pascual-Leone A., Fox M. D. (2016). An open letter concerning do-it-yourself users of transcranial direct current stimulation. Ann. Neurol. 80, 1–4. 10.1002/ana.24689
    1. Xu Y., Chun M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440, 91–95. 10.1038/nature04262
    1. Yavari F., Jamil A., Mosayebi Samani M., Vidor L. P., Nitsche M. A. (2018). Basic and functional effects of transcranial electrical stimulation (tES)—an introduction. Neurosci. Biobehav. Rev. 85, 81–92. 10.1016/j.neubiorev.2017.06.015
    1. Zhou J., Hao Y., Wang Y., Jor’dan A., Pascual-Leone A., Zhang J., et al. . (2014). Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control. Eur. J. Neurosci. 39, 1343–1348. 10.1111/ejn.12492
    1. Zwissler B., Sperber C., Aigeldinger S., Schindler S., Kissler J., Plewnia C. (2014). Shaping memory accuracy by left prefrontal transcranial direct current stimulation. J. Neurosci. 34, 4022–4026. 10.1523/JNEUROSCI.5407-13.2014

Source: PubMed

3
購読する