Comparison of Operating Conditions, Postoperative Pain and Recovery, and Overall Satisfaction of Surgeons with Deep vs. No Neuromuscular Blockade for Spinal Surgery under General Anesthesia: A Prospective Randomized Controlled Trial

Seok Kyeong Oh, Woo-Keun Kwon, Sangwoo Park, Sul Gi Ji, Joo Han Kim, Youn-Kwan Park, Shin Young Lee, Byung Gun Lim, Seok Kyeong Oh, Woo-Keun Kwon, Sangwoo Park, Sul Gi Ji, Joo Han Kim, Youn-Kwan Park, Shin Young Lee, Byung Gun Lim

Abstract

We aimed to investigate operating conditions, postoperative pain, and overall satisfaction of surgeons using deep neuromuscular blockade (NMB) vs. no NMB in patients undergoing lumbar spinal surgery under general anesthesia. Eighty-three patients undergoing lumbar fusion were randomly assigned to receive deep NMB (n = 43) or no NMB (n = 40). In the deep-NMB group, rocuronium was administered to maintain deep NMB (train-of-four count 0, post-tetanic count 1-2) until the end of surgery. In the no-NMB group, sugammadex 4 mg/kg at train-of-four (TOF) count 0-1 or sugammadex 2 mg/kg at TOF count ≥2 was administered to reverse the NMB 10 min after placing the patient prone. Peak inspiratory airway pressure, plateau airway pressure, lumbar retractor pressure significantly were lower in the deep-NMB group. Degree of surgical field bleeding (0-5), muscle tone (1-3), and satisfaction (1-10) rated by the surgeon were all superior in the deep-NMB group. Pain scores, rescue fentanyl consumption in post-anesthesia care unit (PACU), and postoperative patient-controlled analgesia consumption were significantly lower in the deep-NMB group, and this group had a shorter length of stay in PACU. Compared to no NMB, deep NMB provides better operating conditions, reduced postoperative pain and higher overall satisfaction in lumbar spinal surgery.

Keywords: neuromuscular blockade; neuromuscular monitoring; neurosurgical procedures.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Neuromuscular monitoring with a wrist brace. (A) The forearm was immobilized with a detachable wrist brace (Neoban wrist support, Seoul Brace, Seoul, Korea) that allowed the thumb to move, (B) with the stimulating electrode attached to the passage of the ulnar nerve and the elastic preload positioned at the thumb to monitor the response of the adductor pollicis.
Figure A2
Figure A2
The patient positioning and the study setup including the screen setup for masking groups from surgeons.
Figure A3
Figure A3
The retractor pressure transducer setting. (A) A flat planar pneumatic pressure transducer was placed beneath the lumbar retractor blade (B) then the lumbar retractor blades were retracted until they reached the lateral margin of the bilateral facet joints, and (C) the value of the back muscle retractor pressure (mmHg) was shown via a pressure monitor (red circle).
Figure 1
Figure 1
The pressure transducer used for retractor pressure monitoring was attached to a retractor blade. It was mounted on the middle of the inner surface of the retractor. (a) Medial view. (b) Lateral view.
Figure 2
Figure 2
A flow-chart describing patient recruitment, randomization, and withdrawal. NMB: neuromuscular blockade.
Figure 3
Figure 3
The change over time in (a) train-of-four (TOF) ratio, (b) bispectral index (BIS), (c) mean arterial pressure and (d) heart rate at the main time points during the perioperative period. NMB: neuromuscular blockade. The graphs show the mean value and standard deviation of each variable for each time point during general anesthesia. Time point 1: at baseline (before anesthesia), 2: at intubation, 3: at skin incision, 4: 30 min after skin incision, 5: 60 min after skin incision, 6: 120 min after skin incision, 7: at the end of surgery. * p < 0.001.
Figure 3
Figure 3
The change over time in (a) train-of-four (TOF) ratio, (b) bispectral index (BIS), (c) mean arterial pressure and (d) heart rate at the main time points during the perioperative period. NMB: neuromuscular blockade. The graphs show the mean value and standard deviation of each variable for each time point during general anesthesia. Time point 1: at baseline (before anesthesia), 2: at intubation, 3: at skin incision, 4: 30 min after skin incision, 5: 60 min after skin incision, 6: 120 min after skin incision, 7: at the end of surgery. * p < 0.001.

References

    1. Groudine S.B., Soto R., Lien C., Drover D., Roberts K. A randomized, dose-finding, phase II study of the selective relaxant binding drug, Sugammadex, capable of safely reversing profound rocuronium-induced neuromuscular block. Anesth. Analg. 2007;104:555–562. doi: 10.1213/01.ane.0000260135.46070.c3.
    1. Carron M., Zarantonello F., Tellaroli P., Ori C. Efficacy and safety of sugammadex compared to neostigmine for reversal of neuromuscular blockade: A meta-analysis of randomized controlled trials. J. Clin. Anesth. 2016;35:1–12. doi: 10.1016/j.jclinane.2016.06.018.
    1. Martini C.H., Boon M., Bevers R.F., Aarts L.P., Dahan A. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br. J. Anaesth. 2014;112:498–505. doi: 10.1093/bja/aet377.
    1. Kim H.J., Lee K., Park W.K., Lee B.R., Joo H.M., Koh Y.W., Seo Y.W., Kim W.S., Yoo Y.C. Deep neuromuscular block improves the surgical conditions for laryngeal microsurgery. Br. J. Anaesth. 2015;115:867–872. doi: 10.1093/bja/aev368.
    1. Madsen M.V., Istre O., Staehr-Rye A.K., Springborg H.H., Rosenberg J., Lund J., Gatke M.R. Postoperative shoulder pain after laparoscopic hysterectomy with deep neuromuscular blockade and low-pressure pneumoperitoneum: A randomised controlled trial. Eur. J. Anaesthesiol. 2016;33:341–347. doi: 10.1097/EJA.0000000000000360.
    1. Lindekaer A.L., Halvor Springborg H., Istre O. Deep neuromuscular blockade leads to a larger intraabdominal volume during laparoscopy. J. Vis. Exp. 2013 doi: 10.3791/50045.
    1. Blobner M., Frick C.G., Stauble R.B., Feussner H., Schaller S.J., Unterbuchner C., Lingg C., Geisler M., Fink H. Neuromuscular blockade improves surgical conditions (NISCO) Surg. Endosc. 2015;29:627–636. doi: 10.1007/s00464-014-3711-7.
    1. Dubois P.E., Putz L., Jamart J., Marotta M.L., Gourdin M., Donnez O. Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: A randomised controlled trial. Eur. J. Anaesthesiol. 2014;31:430–436. doi: 10.1097/EJA.0000000000000094.
    1. Donati F., Antzaka C., Bevan D.R. Potency of pancuronium at the diaphragm and the adductor pollicis muscle in humans. Anesthesiology. 1986;65:1–5. doi: 10.1097/00000542-198607000-00001.
    1. Kirov K., Motamed C., Dhonneur G. Differential sensitivity of abdominal muscles and the diaphragm to mivacurium: An electromyographic study. Anesthesiology. 2001;95:1323–1328. doi: 10.1097/00000542-200112000-00008.
    1. Edgcombe H., Carter K., Yarrow S. Anaesthesia in the prone position. Br. J. Anaesth. 2008;100:165–183. doi: 10.1093/bja/aem380.
    1. Koh J.C., Lee J.S., Han D.W., Choi S., Chang C.H. Increase in airway pressure resulting from prone position patient placing may predict intraoperative surgical blood loss. Spine. 2013;38:E678–E682. doi: 10.1097/BRS.0b013e31828cb3e5.
    1. Kang W.S., Oh C.S., Kwon W.K., Rhee K.Y., Lee Y.G., Kim T.H., Lee S.H., Kim S.H. Effect of Mechanical Ventilation Mode Type on Intra- and Postoperative Blood Loss in Patients Undergoing Posterior Lumbar Interbody Fusion Surgery: A Randomized Controlled Trial. Anesthesiology. 2016;125:115–123. doi: 10.1097/ALN.0000000000001131.
    1. Fuchs-Buder T., Claudius C., Skovgaard L.T., Eriksson L.I., Mirakhur R.K., Viby-Mogensen J. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: The Stockholm revision. Acta Anaesthesiol. Scand. 2007;51:789–808. doi: 10.1111/j.1399-6576.2007.01352.x.
    1. Pambianco D.J., Whitten C.J., Moerman A., Struys M.M., Martin J.F. An assessment of computer-assisted personalized sedation: A sedation delivery system to administer propofol for gastrointestinal endoscopy. Gastrointest. Endosc. 2008;68:542–547. doi: 10.1016/j.gie.2008.02.011.
    1. Li Y.L., Liu Y.L., Xu C.M., Lv X.H., Wan Z.H. The effects of neuromuscular blockade on operating conditions during general anesthesia for spinal surgery. J. Neurosurg. Anesthesiol. 2014;26:45–49. doi: 10.1097/ANA.0b013e31829f3805.
    1. Fromme G.A., MacKenzie R.A., Gould A.B., Jr., Lund B.A., Offord K.P. Controlled hypotension for orthognathic surgery. Anesth. Analg. 1986;65:683–686. doi: 10.1213/00000539-198606000-00021.
    1. Hayden P., Cowman S. Anaesthesia for laparoscopic surgery. Contin. Educ. Anaesth. Crit. Care Pain. 2011;11:177–180. doi: 10.1093/bjaceaccp/mkr027.
    1. Staehr-Rye A.K., Rasmussen L.S., Rosenberg J., Juul P., Lindekaer A.L., Riber C., Gatke M.R. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: A randomized clinical study. Anesth. Analg. 2014;119:1084–1092. doi: 10.1213/ANE.0000000000000316.
    1. Özdemir-van Brunschot D.M.D., Braat A.E., van der Jagt M.F.P., Scheffer G.J., Martini C.H., Langenhuijsen J.F., Dam R.E., Huurman V.A., Lam D., d’Ancona F.C., et al. Deep neuromuscular blockade improves surgical conditions during low-pressure pneumoperitoneum laparoscopic donor nephrectomy. Surg. Endosc. 2018;32:245–251. doi: 10.1007/s00464-017-5670-2.
    1. Bogani G., Cromi A., Casarin J., Ghezzi F. Low pneumoperitoneum pressure reduces pain after mini-laparoscopic hysterectomy: Results from two independent randomized controlled trails. J. Minim. Invasive Gynecol. 2014;21:967–968. doi: 10.1016/j.jmig.2014.02.010.
    1. Bruintjes M.H., van Helden E.V., Braat A.E., Dahan A., Scheffer G.J., van Laarhoven C.J., Warle M.C. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: A systematic review and meta-analysis. Br. J. Anaesth. 2017;118:834–842. doi: 10.1093/bja/aex116.
    1. Gueret G., Rossignol B., Kiss G., Wargnier J.P., Miossec A., Spielman S., Arvieux C.C. Is muscle relaxant necessary for cardiac surgery? Anesth. Analg. 2004;99:1330–1333. doi: 10.1213/01.ANE.0000132984.56312.FF.
    1. King M., Sujirattanawimol N., Danielson D.R., Hall B.A., Schroeder D.R., Warner D.O. Requirements for muscle relaxants during radical retropubic prostatectomy. Anesthesiology. 2000;93:1392–1397. doi: 10.1097/00000542-200012000-00008.
    1. Tammisto T., Olkkola K.T. Dependence of the adequacy of muscle relaxation on the degree of neuromuscular block and depth of enflurane anesthesia during abdominal surgery. Anesth. Analg. 1995;80:543–547.
    1. Edmonds H.L., Jr., Paloheimo M. Computerized monitoring of the EMG and EEG during anesthesia. An evaluation of the anesthesia and brain activity monitor (ABM) Int. J. Clin. Monit. Comput. 1985;1:201–210. doi: 10.1007/BF01720184.
    1. Amaki Y., Haziri H., Sugimoto N., Shudo Y., Kobayashi K. The degree of muscle relaxation requested by the surgens during upper abdominal surgery. J. Anesth. 1990;4:249–252. doi: 10.1007/s0054000040249.
    1. Yoo Y.C., Kim N.Y., Shin S., Choi Y.D., Hong J.H., Kim C.Y., Park H., Bai S.J. The Intraocular Pressure under Deep versus Moderate Neuromuscular Blockade during Low-Pressure Robot Assisted Laparoscopic Radical Prostatectomy in a Randomized Trial. PLoS ONE. 2015;10:e0135412. doi: 10.1371/journal.pone.0135412.
    1. Torensma B., Martini C.H., Boon M., Olofsen E., In ‘t Veld B., Liem R.S., Knook M.T., Swank D.J., Dahan A. Deep Neuromuscular Block Improves Surgical Conditions during Bariatric Surgery and Reduces Postoperative Pain: A Randomized Double Blind Controlled Trial. PLoS ONE. 2016;11:e0167907. doi: 10.1371/journal.pone.0167907.
    1. Gejo R., Kawaguchi Y., Kondoh T., Tabuchi E., Matsui H., Torii K., Ono T., Kimura T. Magnetic resonance imaging and histologic evidence of postoperative back muscle injury in rats. Spine. 2000;25:941–946. doi: 10.1097/00007632-200004150-00008.
    1. Kawaguchi Y., Matsui H., Tsuji H. Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine. 1996;21:941–944. doi: 10.1097/00007632-199604150-00007.
    1. Kawaguchi Y., Matsui H., Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine. 1994;19:2598–2602. doi: 10.1097/00007632-199411001-00018.
    1. Kawaguchi Y., Yabuki S., Styf J., Olmarker K., Rydevik B., Matsui H., Tsuji H. Back muscle injury after posterior lumbar spine surgery. Topographic evaluation of intramuscular pressure and blood flow in the porcine back muscle during surgery. Spine. 1996;21:2683–2688. doi: 10.1097/00007632-199611150-00019.
    1. Datta G., McGregor A., Medhi-Zadeh S., Khalil N., Hughes S.P. The impact of intermittent retraction on paraspinal muscle function during lumbar surgery. Spine. 2010;35:E1050–E1057. doi: 10.1097/BRS.0b013e3181edea9c.
    1. Styf J.R., Willen J. The effects of external compression by three different retractors on pressure in the erector spine muscles during and after posterior lumbar spine surgery in humans. Spine. 1998;23:354–358. doi: 10.1097/00007632-199802010-00014.
    1. Pajewski T.N., Arlet V., Phillips L.H. Current approach on spinal cord monitoring: The point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur. Spine J. 2007;16(Suppl. 2):S115–S129. doi: 10.1007/s00586-007-0419-6.
    1. Rabai F., Sessions R., Seubert C.N. Neurophysiological monitoring and spinal cord integrity. Best Pract. Res. Clin. Anaesthesiol. 2016;30:53–68. doi: 10.1016/j.bpa.2015.11.006.

Source: PubMed

3
購読する