Continued Follow-Up of Phambili Phase 2b Randomized HIV-1 Vaccine Trial Participants Supports Increased HIV-1 Acquisition among Vaccinated Men

Zoe Moodie, Barbara Metch, Linda-Gail Bekker, Gavin Churchyard, Maphoshane Nchabeleng, Koleka Mlisana, Fatima Laher, Surita Roux, Kathryn Mngadi, Craig Innes, Matsontso Mathebula, Mary Allen, Carter Bentley, Peter B Gilbert, Michael Robertson, James Kublin, Lawrence Corey, Glenda E Gray, Zoe Moodie, Barbara Metch, Linda-Gail Bekker, Gavin Churchyard, Maphoshane Nchabeleng, Koleka Mlisana, Fatima Laher, Surita Roux, Kathryn Mngadi, Craig Innes, Matsontso Mathebula, Mary Allen, Carter Bentley, Peter B Gilbert, Michael Robertson, James Kublin, Lawrence Corey, Glenda E Gray

Abstract

Background: The Phase 2b double-blinded, randomized Phambili/HVTN 503 trial evaluated safety and efficacy of the MRK Ad5 gag/pol/nef subtype B HIV-1 preventive vaccine vs placebo in sexually active HIV-1 seronegative participants in South Africa. Enrollment and vaccinations stopped and participants were unblinded but continued follow-up when the Step study evaluating the same vaccine in the Americas, Caribbean, and Australia was unblinded for non-efficacy. Final Phambili analyses found more HIV-1 infections amongst vaccine than placebo recipients, impelling the HVTN 503-S recall study.

Methods: HVTN 503-S sought to enroll all 695 HIV-1 uninfected Phambili participants, provide HIV testing, risk reduction counseling, physical examination, risk behavior assessment and treatment assignment recall. After adding HVTN 503-S data, HIV-1 infection hazard ratios (HR vaccine vs. placebo) were estimated by Cox models.

Results: Of the 695 eligible, 465 (67%) enrolled with 230 from the vaccine group and 235 from the placebo group. 38% of the 184 Phambili dropouts were enrolled. Enrollment did not differ by treatment group, gender, or baseline HSV-2. With the additional 1286 person years of 503-S follow-up, the estimated HR over Phambili and HVTN 503-S follow-up was 1.52 (95% CI 1.08-2.15, p = 0.02, 82 vaccine/54 placebo infections). The HR was significant for men (HR = 2.75, 95% CI 1.49, 5.06, p = 0.001) but not for women (HR = 1.12, 95% CI 0.73, 1.72, p = 0.62).

Conclusion: The additional follow-up from HVTN 503-S supported the Phambili finding of increased HIV-1 acquisition among vaccinated men and strengthened the evidence of lack of vaccine effect among women.

Trial registration: clinicaltrials.gov NCT00413725 SA National Health Research Database DOH-27-0207-1539.

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and the authors of this manuscript have the following competing interests: MA is employed by the National Institute of Allergy and Infectious Diseases (NIAID), the study sponsor. All authors are current recipients of NIAID funding, and this publication is a result of activities funded by NIAID. MA was not involved with the process of funding these awards, nor in their administration or scientific aspects, and, in accordance with NIAID policies, is deferred from decisions regarding funding of coauthors for a requisite period. This study was also partly funded by Merck and Co Inc. Michael Robertson is an employee of and owns stock in Merck Research Laboratories. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Fig 1. Cumulative HIV-1 incidence curves for…
Fig 1. Cumulative HIV-1 incidence curves for vaccine and placebo groups for Phambili and Phambili + HVTN 503-S follow-up; Phambili + HVTN 503-S curves are based on all MITT Phambili participants (n = 800) with updated HIV-1 status for the subset of participants enrolled in HVTN 503-S (n = 465).
Fig 2. Cumulative HIV-1 incidence curves for…
Fig 2. Cumulative HIV-1 incidence curves for vaccine and placebo groups for Phambili and Phambili + HVTN 503-S follow-up by gender.

References

    1. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. The New England journal of medicine. 2009;361(23):2209–20. 10.1056/NEJMoa0908492 .
    1. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, van Griensven F, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. The Journal of infectious diseases. 2006;194(12):1661–71. 10.1086/508748 .
    1. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. The Journal of infectious diseases. 2005;191(5):654–65. 10.1086/428404 .
    1. Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ, Grove D, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med. 2013;369(22):2083–92. Epub 2013/10/09. 10.1056/NEJMoa1310566
    1. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008;372(9653):1881–93. 10.1016/S0140-6736(08)61591-3
    1. Gray GE, Moodie Z, Metch B, Gilbert PB, Bekker LG, Churchyard G, et al. Recombinant adenovirus type 5 HIV gag/pol/nef vaccine in South Africa: unblinded, long-term follow-up of the phase 2b HVTN 503/Phambili study. Lancet Infect Dis. 2014;14(5):388–96. Epub 2014/02/25. 10.1016/S1473-3099(14)70020-9
    1. Zak DE, Andersen-Nissen E, Peterson ER, Sato A, Hamilton MK, Borgerding J, et al. Merck Ad5/HIV induces broad innate immune activation that predicts CD8(+) T-cell responses but is attenuated by preexisting Ad5 immunity. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(50):E3503–12. 10.1073/pnas.1208972109
    1. Peiperl L, Morgan C, Moodie Z, Li H, Russell N, Graham BS, et al. Safety and immunogenicity of a replication-defective adenovirus type 5 HIV vaccine in Ad5-seronegative persons: a randomized clinical trial (HVTN 054). PloS one. 2010;5(10):e13579 10.1371/journal.pone.0013579
    1. Jaoko W, Karita E, Kayitenkore K, Omosa-Manyonyi G, Allen S, Than S, et al. Safety and immunogenicity study of Multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. PloS one. 2010;5(9):e12873 10.1371/journal.pone.0012873
    1. Nicholson O, Dicandilo F, Kublin J, Sun X, Quirk E, Miller M, et al. Safety and Immunogenicity of the MRKAd5 gag HIV Type 1 Vaccine in a Worldwide Phase 1 Study of Healthy Adults. AIDS research and human retroviruses. 2010. 10.1089/AID.2010.0151
    1. Kibuuka H, Kimutai R, Maboko L, Sawe F, Schunk MS, Kroidl A, et al. A phase 1/2 study of a multiclade HIV-1 DNA plasmid prime and recombinant adenovirus serotype 5 boost vaccine in HIV-Uninfected East Africans (RV 172). The Journal of infectious diseases. 2010;201(4):600–7. 10.1086/650299
    1. Churchyard GJ, Morgan C, Adams E, Hural J, Graham BS, Moodie Z, et al. A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204). PloS one. 2011;6(8):e21225 10.1371/journal.pone.0021225
    1. Harro C, Sun X, Stek JE, Leavitt RY, Mehrotra DV, Wang F, et al. Safety and immunogenicity of the Merck adenovirus serotype 5 (MRKAd5) and MRKAd6 human immunodeficiency virus type 1 trigene vaccines alone and in combination in healthy adults. Clinical and vaccine immunology: CVI. 2009;16(9):1285–92. 10.1128/CVI.00144-09
    1. Koup RA, Lamoreaux L, Zarkowsky D, Bailer RT, King CR, Gall JG, et al. Replication-defective adenovirus vectors with multiple deletions do not induce measurable vector-specific T cells in human trials. Journal of virology. 2009;83(12):6318–22. 10.1128/JVI.00384-09
    1. Harro CD, Robertson MN, Lally MA, O'Neill LD, Edupuganti S, Goepfert PA, et al. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults. AIDS research and human retroviruses. 2009;25(1):103–14. 10.1089/aid.2008.0212
    1. Duerr A, Huang Y, Buchbinder S, Coombs RW, Sanchez J, del Rio C, et al. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step Study). J Infect Dis. 2012;206(2):258–66. Epub 2012/05/09. 10.1093/infdis/jis342
    1. Gray GE, Allen M, Moodie Z, Churchyard G, Bekker LG, Nchabeleng M, et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. The Lancet Infectious diseases. 2011;11(7):507–15. 10.1016/S1473-3099(11)70098-6
    1. Calcedo R, Vandenberghe LH, Roy S, Somanathan S, Wang L, Wilson JM. Host immune responses to chronic adenovirus infections in human and nonhuman primates. Journal of virology. 2009;83(6):2623–31. 10.1128/JVI.02160-08
    1. Ganguly S, Manicassamy S, Blackwell J, Pulendran B, Amara RR. Adenovirus type 5 induces vitamin A-metabolizing enzymes in dendritic cells and enhances priming of gut-homing CD8 T cells. Mucosal immunology. 2011;4(5):528–38. 10.1038/mi.2011.1
    1. Benlahrech A, Harris J, Meiser A, Papagatsias T, Hornig J, Hayes P, et al. Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(47):19940–5. 10.1073/pnas.0907898106
    1. Lewis GK, DeVico AL, Gallo RC. Antibody persistence and T-cell balance: two key factors confronting HIV vaccine development. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(44):15614–21. 10.1073/pnas.1413550111
    1. Cohen CR, Moscicki AB, Scott ME, Ma Y, Shiboski S, Bukusi E, et al. Increased levels of immune activation in the genital tract of healthy young women from sub-Saharan Africa. Aids. 2010;24(13):2069–74. 10.1097/QAD.0b013e32833c323b
    1. Lemos MP, Lama JR, Karuna ST, Fong Y, Montano SM, Ganoza C, et al. The inner foreskin of healthy males at risk of HIV infection harbors epithelial CD4+ CCR5+ cells and has features of an inflamed epidermal barrier. PloS one. 2014;9(9):e108954 10.1371/journal.pone.0108954

Source: PubMed

3
購読する