The impact of retractor SPONGE-assisted laparoscopic surgery on duration of hospital stay and postoperative complications in patients with colorectal cancer (SPONGE trial): study protocol for a randomized controlled trial

Alice M Couwenberg, Maarten J P Burbach, Anke B Smits, Marco Van Vulpen, Wilhemina M U Van Grevenstein, Peter G Noordzij, Helena M Verkooijen, Alice M Couwenberg, Maarten J P Burbach, Anke B Smits, Marco Van Vulpen, Wilhemina M U Van Grevenstein, Peter G Noordzij, Helena M Verkooijen

Abstract

Background: To achieve an adequate visual working field during laparoscopic colorectal surgery without disturbance of the small intestine, patients are positioned in the Trendelenburg position. This position results in hemodynamic changes that may increase the risk of cardiopulmonary complications and prolonged hospital stay. Recently, an intraoperative retractor sponge was introduced as an alternative to the Trendelenburg position during laparoscopic surgery. The objective of this trial is to study the impact of the use of an intraoperative retractor sponge on the duration of the hospital stay and risk of perioperative complications in patients undergoing laparoscopic surgery for colorectal cancer.

Methods/design: The SPONGE trial is a monocenter study and follows the cohort multiple randomized controlled trial (cmRCT) design. It will be conducted within a multicenter prospective observational cohort of colorectal cancer patients of all stages, for whom longitudinal clinical data and patient-reported outcomes are collected. Patients within the cohort, who will undergo laparoscopic surgery for distal colon or rectal cancer, are eligible for inclusion and form a subcohort. From this subcohort, a 1:1 random sample will be offered to undergo surgery with the use of the retractor sponge. Patients from the subcohort who are not selected will undergo standard treatment, that is, surgery in the Trendelenburg position. The primary endpoint is the duration of the postoperative hospital stay. Secondary outcomes are duration of surgery; intraoperative blood loss and fluid balance; and postoperative body temperature, oxygenation and complications. Both arms require 94 patients.

Discussion: This study is the first randomized controlled trial to evaluate the effect of sponge-assisted laparoscopic colorectal surgery in comparison with standard Trendelenburg position on hospital stay and peri- and postoperative complications. Results of this study will also be relevant for other surgical procedures in the pelvic region. The present study is the second randomized controlled trial according to the cmRCT design, which is embedded within our colorectal cancer cohort.

Trial registration number: ClinicalTrials.gov NCT02574013 . Registered 27 September 2015.

Keywords: Colorectal cancer; gastrointestinal surgery; laparoscopic surgery.

Figures

Fig. 1
Fig. 1
Overview study design and treatment allocation. PLCRC, prospective cohort of colorectal cancer patients; SPONGE trial, randomized controlled trial for clinical evaluation of an intraoperative retractor SPONGE in laparoscopic colorectal surgery

References

    1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. Lyon: International Agency for Research on Cancer; 2012.
    1. Redactie. DICA jaarrapport, DSCA 2013 [Internet]. 2013. Available from:
    1. Gainsburg DM. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012;78(5):596-604.
    1. Schramm P, Treiber A-H, Berres M, Pestel G, Engelhard K, Werner C, et al. Time course of cerebrovascular autoregulation during extreme Trendelenburg position for robotic-assisted prostatic surgery. Anaesthesia. 2014;69(1):58–63. doi: 10.1111/anae.12477.
    1. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12(1):10–4. doi: 10.1097/00008506-200001000-00003.
    1. Pinkney TD, King AJ, Walter C, Wilson TR, Maxwell-Armstrong C, Acheson AG. Raised intraocular pressure [IOP] and perioperative visual loss in laparoscopic colorectal surgery: a catastrophe waiting to happen? A systematic review of evidence from other surgical specialities. Tech Coloproctol. 2012;16(5):331–5. doi: 10.1007/s10151-012-0879-5.
    1. Kadono Y, Yaegashi H, Machioka K, Ueno S, Miwa S, Maeda Y, et al. Cardiovascular and respiratory effects of the degree of head-down angle during robot-assisted laparoscopic radical prostatectomy. Int J Med Robot. 2013;9(1):17-22.
    1. Kalmar AF, Foubert L, Hendrickx JFA, Mottrie A, Absalom A, Mortier EP, et al. Influence of steep Trendelenburg position and CO[2] pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104(4):433–9. doi: 10.1093/bja/aeq018.
    1. Kilic OF, Börgers A, Köhne W, Musch M, Kröpfl D, Groeben H. Effects of steep Trendelenburg position for robotic-assisted prostatectomies on intra- and extrathoracic airways in patients with or without chronic obstructive pulmonary disease. Br J Anaesth. 2015;114(1):70-6.
    1. J.S. Pawiroredjo, MD1N. Rijkers, BSc1A.B. Smits, MD P. The use of endoractor during laparoscopic colorectal surgery; a new solution? Pilot study. NVGE Voorjaarscongres [Internet]. NH Conference Centre Koningshof Veldhoven; 2014. Available from:
    1. Relton C, Torgerson D, Cathain AO, Nicholl J. Rethinking pragmatic randomised controlled trials : introducing the “ cohort multiple randomised controlled trial ” design. BMJ. 2010;340:c1066. doi: 10.1136/bmj.c1066.
    1. Young-Afat DA, Verkooijen HM, Van Gils CH, Van der Velden JM, Burbach J, Elias SG, et al. Staged-informed consent in the cohort multiple Randomized Controlled Trial design: Rethinking patient-centered informed consent to avoid pre-randomization. Epidemiology. 2016 Jan 6. [Epub ahead of print]
    1. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Am J Clin Oncol. 1982;5(6):649–55. doi: 10.1097/00000421-198212000-00014.
    1. Burbach JPM, Verkooijen HM, Intven M, Kleijnen J-PJ, Bosman ME, Raaymakers BW, et al. RandomizEd controlled trial for pre-operAtive dose-escaLation BOOST in locally advanced rectal cancer [RECTAL BOOST study]: study protocol for a randomized controlled trial. Trials. 2015;16(1):58. doi: 10.1186/s13063-015-0586-4.
    1. Matsuoka S, Kikuchi I, Kitade M, Kumakiri J, Jinushi M, Tokita S, et al. Utility of an organ retraction sponge [endoractor] in gynecologic laparoscopic surgery. J Minim Invasive Gynecol. 2011;18(4):507–11. doi: 10.1016/j.jmig.2011.04.012.
    1. Delaney CP. Outcome of Discharge Within 24 to 72 Hours After Laparoscopic Colorectal Surgery. Dis Colon Rectum. 2008;51:181–5. doi: 10.1007/s10350-007-9126-y.
    1. Iranmanesh P, Frossard JL, Mugnier-Konrad B, Morel P, Majno P, Nguyen-Tang T, et al. Initial Cholecystectomy vs Sequential Common Duct Endoscopic Assessment and Subsequent Cholecystectomy for Suspected Gallstone Migration. JAMA. 2014;312(2):137–44. doi: 10.1001/jama.2014.7587.
    1. Erich L. Lehmann. Nonparametrics : Statistical Methods Based on Ranks, Revised. ISBN = 978-0139977350 [Internet]. 1998. 76-81 p. Available from:
    1. Hendren SK, Morris AM. Evaluating Patients Undergoing Colorectal Surgery to Estimate and Minimize Morbidity and Mortality. Surgical Clinics of North America [Internet]. Elsevier Inc; 2013 Feb [cited 2014 Apr 7]; 93[1]:1–20. Available from:
    1. Böttger TC, Hermeneit S, Müller M, Terzic A, Rodehorst A, Elad L, et al. Modifiable surgical and anesthesiologic risk factors for the development of cardiac and pulmonary complications after laparoscopic colorectal surgery. Surg Endosc. 2009;23(9):2016–25. doi: 10.1007/s00464-008-9916-x.
    1. Schiphorst AHW, Verweij NM, Pronk A, Borel Rinkes IHM, Hamaker ME. Non-surgical complications after laparoscopic and open surgery for colorectal cancer - A systematic review of randomised controlled trials. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology [Internet]. 2015 May 1 [cited 2015 Jun 8]; Available from:
    1. Van der Pas MH, Haglind E, Cuesta MA, Fürst A, Lacy AM, Hop WC, et al. Laparoscopic versus open surgery for rectal cancer [COLOR II]: short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013;14(3):210–8. doi: 10.1016/S1470-2045(13)70016-0.
    1. Danic MJ, Chow M, Alexander G, Bhandari A, Menon M, Brown M. Anesthesia considerations for robotic-assisted laparoscopic prostatectomy: a review of 1,500 cases. J Robot Surg. 2007;1(2):119–23. doi: 10.1007/s11701-007-0024-z.
    1. Lestar M, Gunnarsson L, Lagerstrand L, Wiklund P, Odeberg-Wernerman S. Hemodynamic perturbations during robot-assisted laparoscopic radical prostatectomy in 45° Trendelenburg position. Anesth Analg. 2011;113(5):1069–75. doi: 10.1213/ANE.0b013e3182075d1f.
    1. Falabella A, Moore-Jeffries E, Sullivan MJ, Nelson R, Lew M. Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: a trans-oesophageal Doppler probe study. Int J Med Robot. 2007;3(4):312–5. doi: 10.1002/rcs.165.
    1. Haas S, Haese A, Goetz AE, Kubitz JC. Haemodynamics and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position. Int J Med Robot. 2011;7(4):408–13. doi: 10.1002/rcs.410.
    1. Barnett JC, Hurd WW, Rogers RM, Williams NL, Shapiro SA. Laparoscopic positioning and nerve injuries. J Minim Invasive Gynecol. 2007;14(5):664–72. doi: 10.1016/j.jmig.2007.04.008.
    1. Shveiky D, Aseff JN, Iglesia CB. Brachial plexus injury after laparoscopic and robotic surgery. J Minim Invasive Gynecol. 2010;17(4):414–20. doi: 10.1016/j.jmig.2010.02.010.
    1. Mol L, Koopman M, van Gils CWM, Ottevanger PB, Punt CJA. Comparison of treatment outcome in metastatic colorectal cancer patients included in a clinical trial versus daily practice in The Netherlands. Acta Oncol. 2013;52(5):950–5. doi: 10.3109/0284186X.2013.777158.
    1. Burbach JPM, den Harder AM, Intven M, van Vulpen M, Verkooijen HM, Reerink O. Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. Radiother Oncol. 2014;113(1):1–9. doi: 10.1016/j.radonc.2014.08.035.
    1. Kernan WN, Viscoli CM, Makuch RW, Brass LM, Horwitz RI. Stratified randomization for clinical trials. J Clin Epidemiol. 1999;52(1):19–26. doi: 10.1016/S0895-4356(98)00138-3.
    1. Simon R. Patient subsets and variation in therapeutic efficacy. Br J Clin Pharmacol. 1982;14(4):473–82. doi: 10.1111/j.1365-2125.1982.tb02015.x.
    1. Kahan BC, Morris TP. Improper analysis of trials randomised using stratified blocks or minimisation. Stat Med. 2012;31(4):328–40. doi: 10.1002/sim.4431.

Source: PubMed

3
購読する