Study protocol of the DUtch PARkinson Cohort (DUPARC): a prospective, observational study of de novo Parkinson's disease patients for the identification and validation of biomarkers for Parkinson's disease subtypes, progression and pathophysiology

Jeffrey M Boertien, Sygrid van der Zee, Asterios Chrysou, Marleen J J Gerritsen, Nomdo M Jansonius, Jacoba M Spikman, Teus van Laar, PPNN Study Group, N A Verwey, B Van Harten, A T Portman, M J H Langedijk, P G Oomes, B J A M Jansen, T Van Wieren, S J A Van den Bogaard, W Van Steenbergen, R Duyff, J P Van Amerongen, P S S Fransen, S K L Polman, R T Zwartbol, M E Van Kesteren, J P Braakhekke, J Trip, L Koops, C J De Langen, G De Jong, J E S Hartono, H Ybema, A L Bartels, F E Reesink, A G Postma, G J H Vonk, J M T H Oen, M J Brinkman, T Mondria, R S Holscher, A A E Van der Meulen, A W F Rutgers, W A Boekestein, L K Teune, P J L Orsel, J E Hoogendijk, T Van Laar, Jeffrey M Boertien, Sygrid van der Zee, Asterios Chrysou, Marleen J J Gerritsen, Nomdo M Jansonius, Jacoba M Spikman, Teus van Laar, PPNN Study Group, N A Verwey, B Van Harten, A T Portman, M J H Langedijk, P G Oomes, B J A M Jansen, T Van Wieren, S J A Van den Bogaard, W Van Steenbergen, R Duyff, J P Van Amerongen, P S S Fransen, S K L Polman, R T Zwartbol, M E Van Kesteren, J P Braakhekke, J Trip, L Koops, C J De Langen, G De Jong, J E S Hartono, H Ybema, A L Bartels, F E Reesink, A G Postma, G J H Vonk, J M T H Oen, M J Brinkman, T Mondria, R S Holscher, A A E Van der Meulen, A W F Rutgers, W A Boekestein, L K Teune, P J L Orsel, J E Hoogendijk, T Van Laar

Abstract

Background: Parkinson's Disease (PD) is a heterogeneous, progressive neurodegenerative disorder which is characterized by a variety of motor and non-motor symptoms. To date, no disease modifying treatment for PD exists. Here, the study protocol of the Dutch Parkinson Cohort (DUPARC) is described. DUPARC is a longitudinal cohort study aimed at deeply phenotyping de novo PD patients who are treatment-naïve at baseline, to discover and validate biomarkers for PD progression, subtypes and pathophysiology.

Methods/design: DUPARC is a prospective cohort study in which 150 de novo PD subjects will be recruited through a collaborative network of PD treating neurologists in the northern part of the Netherlands (Parkinson Platform Northern Netherlands, PPNN). Participants will receive follow-up assessments after 1 year and 3 years, with the intention of an extended follow-up with 3 year intervals. Subjects are extensively characterized to primarily assess objectives within three major domains of PD: cognition, gastrointestinal function and vision. This includes brain magnetic resonance imaging (MRI); brain cholinergic PET-imaging with fluoroethoxybenzovesamicol (FEOBV-PET); brain dopaminergic PET-imaging with fluorodopa (FDOPA-PET); detailed neuropsychological assessments, covering all cognitive domains; gut microbiome composition; intestinal wall permeability; optical coherence tomography (OCT); genotyping; motor and non-motor symptoms; overall clinical status and lifestyle factors, including a dietary assessment; storage of blood and feces for additional analyses of inflammation and metabolic parameters. Since the start of the inclusion, at the end of 2017, over 100 PD subjects with a confirmed dopaminergic deficit on FDOPA-PET have been included.

Discussion: DUPARC is the first study to combine data within, but not limited to, the non-motor domains of cognition, gastrointestinal function and vision in PD subjects over time. As a de novo PD cohort, with treatment naïve subjects at baseline, DUPARC provides a unique opportunity for biomarker discovery and validation without the possible confounding influences of dopaminergic medication.

Trial registration: NCT04180865; registered retrospectively, November 28th 2019.

Keywords: Biomarkers; Cognition; Gastrointestinal microbiome; Longitudinal studies; Microbiota; Neurodegenerative diseases; Neuropsychology; Observational study; Ophthalmology; Parkinson disease.

Conflict of interest statement

TvL has received research support from the Weston Brain Institute, speaker fees from Britannia, AbbVie and Medtronic, and is on the advisory boards of LTI and Neuroderm.

Figures

Fig. 1
Fig. 1
Baseline recruitment and assessments from Q4 2017 to Q3 2020 of treatment-naïve de novo PD subjects through the collaborative network of PD treating neurologists Parkinson Platform Northern Netherlands (PPNN). 1. Study procedures start at home with 1a. the collection of a saliva sample for genetic screening; 1b. Assessments of gastrointestinal function and stool sample collection; 1c. questionnaire assessments. 2. Participants visit the University Medical Center Groningen (UMCG) on 2 days for 2a. a complete cognitive assessment; 2b. imaging; 2c. ophthalmological assessments; 2d. clinical assessments. * In a subset of participants, intestinal wall permeability will also be assessed using blood samples and a urinary excretion test. ** Hyposmia is also assessed using the Sniffin’ sticks. Source clipart: clipart-library.com

References

    1. Von Campenhausen S, Bornschein B, Wick R, Bötzel K, Sampaio C, Poewe W, et al. Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol. 2005;15:473–490. doi: 10.1016/j.euroneuro.2005.04.007.
    1. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease. Neurology. 2016;86:566–576. doi: 10.1212/WNL.0000000000002350.
    1. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181.
    1. Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2015;30:1600–1611. doi: 10.1002/mds.26431.
    1. Von Coelln R, Shulman LM. Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol. 2016;29:727–734. doi: 10.1097/WCO.0000000000000384.
    1. Van Rooden SM, Colas F, Martínez-Martín P, Visser M, Verbaan D, Marinus J, et al. Clinical subtypes of Parkinson’s disease. Mov Disord. 2011;26:51–58. doi: 10.1002/mds.23346.
    1. Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75:1062–1069. doi: 10.1212/WNL.0b013e3181f39d0e.
    1. Lawson RA, Yarnall AJ, Duncan GW, Khoo TK, Breen DP, Barker RA, et al. Severity of mild cognitive impairment in early Parkinson’s disease contributes to poorer quality of life. Park Relat Disord. 2014;20:1071–1075. doi: 10.1016/j.parkreldis.2014.07.004.
    1. Halliday GM, Leverenz JB, Schneider JS, Adler CH. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord. 2014;29:634–650. doi: 10.1002/mds.25857.
    1. Müller MLTM, Bohnen NI. Cholinergic dysfunction in parkinson’s disease. Curr Neurol Neurosci Rep. 2013;13.
    1. Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission systems in Parkinson’s disease. Rev Neurosci. 2017;28:509–536. doi: 10.1515/revneuro-2016-0068.
    1. Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65:1716–1722. doi: 10.1212/01.wnl.0000191154.78131.f6.
    1. Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. 2010;74:885–892. doi: 10.1212/WNL.0b013e3181d55f61.
    1. Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology. 2009;73:273–278. doi: 10.1212/WNL.0b013e3181ab2b58.
    1. Greenfield SA. A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal secretion to the generation of movement. Cell Mol Neurobiol. 1991;11:55–77. doi: 10.1007/BF00712800.
    1. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology. 1999;52:691. doi: 10.1212/WNL.52.4.691.
    1. Petrou M, Frey KA, Kilbourn MR, Scott PJH, Raffel DM, Bohnen NI, et al. In vivo imaging of human cholinergic nerve terminals with (−)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med. 2014;55:396–404. doi: 10.2967/jnumed.113.124792.
    1. Zee S, Vállez García D, Elsinga PH, Willemsen ATM, Boersma HH, Gerritsen MJJ, et al. [18 F]Fluoroethoxybenzovesamicol in Parkinson’s disease patients: quantification of a novel cholinergic positron emission tomography tracer. Mov Disord. 2019;34:924–926. doi: 10.1002/mds.27698.
    1. Savica R, Carlin JM, Grossardt BR, Bower JH, Ahlskog JE, Maraganore DM, et al. Medical records documentation of constipation preceding Parkinson disease: a case-control study. Neurology. 2009;73:1752–1758. doi: 10.1212/WNL.0b013e3181c34af5.
    1. Visanji NP, Marras C, Hazrati L-NN, Liu LWCC, Lang AE. Alimentary, my dear Watson? The challenges of enteric α-synuclein as a Parkinson’s disease biomarker. Mov Disord. 2014;29:444–450. doi: 10.1002/mds.25789.
    1. Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79:940–949. doi: 10.1002/ana.24648.
    1. Breen DP, Halliday GM, Lang AE. Gut–brain axis and the spread of α-synuclein pathology: vagal highway or dead end? Mov Disord. 2019;34:307–316. doi: 10.1002/mds.27556.
    1. Van IJzendoorn SCD, Derkinderen P. The intestinal barrier in Parkinson’s disease: current state of knowledge. J Parkinson’s Dis. 2019;9:S323–9.
    1. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–1480.e12. doi: 10.1016/j.cell.2016.11.018.
    1. Boertien JM, Pereira PAB, Aho VTE, Scheperjans F. Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: a systematic review. J Parkinsons Dis. 2019:1–15. 10.3233/JPD-191711.
    1. Van Laar T, Boertien JM, Herranz AH. Faecal transplantation, pro- and prebiotics in Parkinson’s disease; hope or hype? J Park Dis. 2019;9:S371–S379.
    1. Borghammer P, Van Den Berge N. Brain-first versus gut-first Parkinson’s disease: a hypothesis. J Park Dis. 2019;9:S281–S295.
    1. Tsironi EE, Dastiridou A, Katsanos A, Dardiotis E, Veliki S, Patramani G, et al. Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol. 2012;12:54. doi: 10.1186/1471-2415-12-54.
    1. Weil RS, Schrag AE, Warren JD, Crutch SJ, Lees AJ, Morris HR. Visual dysfunction in Parkinson’s disease. Brain. 2016;139:2827–2843. doi: 10.1093/brain/aww175.
    1. Ekker MS, Janssen S, Seppi K, Poewe W, de Vries NM, Theelen T, et al. Ocular and visual disorders in Parkinson’s disease: common but frequently overlooked. Parkinsonism Relat Disord. 2017;40:1–10. doi: 10.1016/j.parkreldis.2017.02.014.
    1. Archibald NK, Clarke MP, Mosimann UP, Burn DJ. The retina in Parkinson’s disease. Brain. 2009;132:1128–1145. doi: 10.1093/brain/awp068.
    1. Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson’s disease: possible value as biomarkers. Mov Disord. 2018;33:1390–1406. doi: 10.1002/mds.27454.
    1. Chrysou A, Jansonius NM, van Laar T. Retinal layers in Parkinson’s disease: a meta-analysis of spectral-domain optical coherence tomography studies. Parkinsonism Relat Disord. 2019;64:40–49. doi: 10.1016/j.parkreldis.2019.04.023.
    1. McKinnon SJ. The cell and molecular biology of glaucoma: common neurodegenerative pathways and relevance to glaucoma. Investig Opthalmology Vis Sci. 2012;53:2485. doi: 10.1167/iovs.12-9483j.
    1. La Morgia C, Di Vito L, Carelli V, Carbonelli M. Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs magnocellular degeneration in optical coherence tomography studies. Front Neurol. 2017;8:710. doi: 10.3389/fneur.2017.00710.
    1. Satue M, Obis J, Rodrigo MJ, Otin S, Fuertes MI, Vilades E, et al. Optical coherence tomography as a biomarker for diagnosis, progression, and prognosis of neurodegenerative diseases. J Ophthalmol. 2016;2016:1–9. doi: 10.1155/2016/8503859.
    1. Sung MS, Choi S-M, Kim J, Ha JY, Kim B-C, Heo H, et al. Inner retinal thinning as a biomarker for cognitive impairment in de novo Parkinson’s disease. Sci Rep. 2019;9:11832. doi: 10.1038/s41598-019-48388-7.
    1. Ahn J, Lee J-Y, Kim TW, Yoon EJ, Oh S, Kim YK, et al. Retinal thinning associates with nigral dopaminergic loss in de novo Parkinson disease. Neurology. 2018;91:e1003–e1012. doi: 10.1212/WNL.0000000000006157.
    1. Scholtens S, Smidt N, Swertz MA, Bakker SJL, Dotinga A, Vonk JM, et al. Cohort profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol. 2015;44:1172–1180. doi: 10.1093/ije/dyu229.
    1. Tigchelaar EF, Zhernakova A, Dekens JAM, Hermes G, Baranska A, Mujagic Z, et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open. 2015;5:e006772. doi: 10.1136/bmjopen-2014-006772.
    1. Additional collection › Lifelines. . Accessed 24 Oct 2019.
    1. Bohnen NI, Kanel P, Zhou Z, Koeppe RA, Frey KA, Dauer WT, et al. Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann Neurol. 2019;85:538–549. doi: 10.1002/ana.25430.
    1. Bohnen NI, Müller MLTM, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab. 2012;32:1609–1617. doi: 10.1038/jcbfm.2012.60.
    1. Goldman JG, Williams-Gray C, Barker RA, Duda JE, Galvin JE. The spectrum of cognitive impairment in Lewy body diseases. Mov Disord. 2014;29:608–621. doi: 10.1002/mds.25866.
    1. Patel CJ, Ioannidis JPA. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. J Epidemiol Community Health. 2014;68:1096–1100. doi: 10.1136/jech-2014-204195.

Source: PubMed

3
購読する