Effects of Plasmodium falciparum infection on umbilical artery resistance and intrafetal blood flow distribution: a Doppler ultrasound study from Papua New Guinea

Maria Ome-Kaius, Stephan Karl, Regina Alice Wangnapi, John Walpe Bolnga, Glen Mola, Jane Walker, Ivo Mueller, Holger Werner Unger, Stephen John Rogerson, Maria Ome-Kaius, Stephan Karl, Regina Alice Wangnapi, John Walpe Bolnga, Glen Mola, Jane Walker, Ivo Mueller, Holger Werner Unger, Stephen John Rogerson

Abstract

Background: Doppler velocimetry studies of umbilical artery (UA) and middle cerebral artery (MCA) flow help to determine the presence and severity of fetal growth restriction. Increased UA resistance and reduced MCA pulsatility may indicate increased placental resistance and intrafetal blood flow redistribution. Malaria causes low birth weight and fetal growth restriction, but few studies have assessed its effects on uteroplacental and fetoplacental blood flow.

Methods: Colour-pulsed Doppler ultrasound was used to assess UA and MCA flow in 396 Papua New Guinean singleton fetuses. Abnormal flow was defined as an UA resistance index above the 90th centile, and/or a MCA pulsatility index and cerebroplacental ratio (ratio of MCA and UA pulsatility index) below the 10th centile of population-specific models fitted to the data. Associations between malaria (peripheral infection prior to and at ultrasound examination, and any gestational infection, i.e., 'exposure') and abnormal flow, and between abnormal flow and birth outcomes, were estimated.

Results: Of 78 malaria infection episodes detected before or at the ultrasound visit, 62 (79.5%) were Plasmodium falciparum (34 sub-microscopic infections), and 16 were Plasmodium vivax. Plasmodium falciparum infection before or at Doppler measurement was associated with increased UA resistance (adjusted odds ratio (aOR) 2.3 95% CI 1.0-5.2, P = 0.047). When assessed by 'exposure', P. falciparum infection was significantly associated with increased UA resistance (all infections: 2.4, 1.1-4.9, P = 0.024; sub-microscopic infections 2.6, 1.0-6.6, P = 0.051) and a reduced MCA pulsatility index (all infections: 2.6, 1.2-5.3, P = 0.012; sub-microscopic infections: 2.8, 1.1-7.5, P = 0.035). Sub-microscopic P. falciparum infections were additionally associated with a reduced cerebroplacental ratio (3.64, 1.22-10.88, P = 0.021). There were too few P. vivax infections to draw robust conclusions. An increased UA resistance index was associated with histological evidence of placental malaria (5.1, 2.3-10.9, P < 0.001; sensitivity 0.26, specificity 0.93). A low cerebroplacental Doppler ratio was associated with concurrently measuring small-for-gestational-age, and with low birth weight.

Discussion/conclusion: Both microscopic and sub-microscopic P. falciparum infections impair fetoplacental and intrafetal flow, at least temporarily. Increased UA resistance has high specificity but low sensitivity for the detection of placental infection. These findings suggest that interventions to protect the fetus should clear and prevent both microscopic and sub-microscopic malarial infections. Trial Registration ClinicalTrials.gov NCT01136850. Registered 06 April 2010.

Keywords: Cerebroplacental ratio; Doppler; Fetal growth; Middle cerebral artery pulsatility; Sub-microscopic; Umbilical artery resistance.

Figures

Fig. 1
Fig. 1
Umbilical artery resistance index (a), middle cerebral artery pulsatility index (b) and cerebroplacental Doppler ratio (c) change with gestational age and regression curves. Black lines are the means (µ) of the mixed effects model regression (given in Eqs. 1a, 2a, 3a). The shaded areas are the intervals between which 95% (grey) and 80% (light green) of the data are located, equivalent to the 2.5th/97.7th and 10th/90th centiles and corresponding to Eqs. (1b, 2b, 3b) calculated as per Royston [18]

References

    1. Christian P, Lee SE, Donahue Angel M, Adair LS, Arifeen SE, Ashorn P, et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int J Epidemiol. 2013;42:1340–1355. doi: 10.1093/ije/dyt109.
    1. Wang H, Liddell CA, Coates MM, Mooney MD, Levitz CE, Schumacher AE, et al. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384:957–979. doi: 10.1016/S0140-6736(14)60497-9.
    1. Umbers AJ, Aitken EH, Rogerson SJ. Malaria in pregnancy: small babies, big problem. Trends Parasitol. 2011;27:168–175. doi: 10.1016/j.pt.2011.01.007.
    1. Huynh BT, Cottrell G, Cot M, Briand V. Burden of malaria in early pregnancy: a neglected problem? Clin Infect Dis. 2014;60:598–604. doi: 10.1093/cid/ciu848.
    1. Umbers AJ, Stanisic DI, Ome M, Wangnapi R, Hanieh S, Unger HW, et al. Does malaria affect placental development? Evidence from in vitro models. PLoS ONE. 2013;8:e55269. doi: 10.1371/journal.pone.0055269.
    1. Boeuf P, Aitken EH, Chandrasiri U, Chua CL, McInerney B, McQuade L, et al. Plasmodium falciparum malaria elicits inflammatory responses that dysregulate placental amino acid transport. PLoS Pathog. 2013;9:e1003153. doi: 10.1371/journal.ppat.1003153.
    1. Conroy AL, Silver KL, Zhong K, Rennie M, Ward P, Sarma JV, et al. Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe. 2013;13:215–226. doi: 10.1016/j.chom.2013.01.010.
    1. Umbers AJ, Boeuf P, Clapham C, Stanisic DI, Baiwog F, Mueller I, et al. Placental malaria-associated inflammation disturbs the insulin-like growth factor axis of fetal growth regulation. J Infect Dis. 2011;203:561–569. doi: 10.1093/infdis/jiq080.
    1. Chandrasiri UP, Chua CL, Umbers AJ, Chaluluka E, Glazier JD, Rogerson SJ, et al. Insight into the pathogenesis of fetal growth restriction in placental malaria: decreased placental glucose transporter isoform 1 expression. J Infect Dis. 2014;209:1663–1667. doi: 10.1093/infdis/jit803.
    1. Acharya G, Wilsgaard T, Berntsen GK, Maltau JM, Kiserud T. Reference ranges for serial measurements of umbilical artery Doppler indices in the second half of pregnancy. Am J Obstet Gynecol. 2005;192:937–944. doi: 10.1016/j.ajog.2004.09.019.
    1. Ebbing C, Rasmussen S, Kiserud T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet Gynecol. 2007;30:287–296. doi: 10.1002/uog.4088.
    1. Mari G, Deter RL. Middle cerebral artery flow velocity waveforms in normal and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1992;166:1262–1270. doi: 10.1016/S0002-9378(11)90620-6.
    1. McCowan LM, Harding JE, Stewart AW. Umbilical artery Doppler studies in small for gestational age babies reflect disease severity. BJOG. 2000;107:916–925. doi: 10.1111/j.1471-0528.2000.tb11092.x.
    1. Arbeille P, Carles G, Bousquet F, Body G, Lansac J. Fetal cerebral and umbilical artery blood flow changes during pregnancy complicated by malaria. J Ultrasound Med. 1998;17:223–229. doi: 10.7863/jum.1998.17.4.223.
    1. Arbeille P, Carles G, Georgescu M, Tobal N, Herault S, Bousquet F, et al. Consequences of reduced umbilical and increased foetal cerebral flow during malaria crisis on foetal behaviour. Parasitology. 2003;126:513–519.
    1. Dorman EK, Shulman CE, Kingdom J, Bulmer JN, Mwendwa J, Peshu N, et al. Impaired uteroplacental blood flow in pregnancies complicated by falciparum malaria. Ultrasound Obstet Gynecol. 2002;19:165–170. doi: 10.1046/j.0960-7692.2001.00545.x.
    1. McClure EM, Meshnick SR, Lazebnik N, Mungai P, King CL, Hudgens M, et al. A cohort study of Plasmodium falciparum malaria in pregnancy and associations with uteroplacental blood flow and fetal anthropometrics in Kenya. Int J Gynaecol Obstet. 2014;126:78–82. doi: 10.1016/j.ijgo.2014.01.016.
    1. Griffin JB, Lokomba V, Landis SH, Thorp JM, Jr, Herring AH, Tshefu AK, et al. Plasmodium falciparum parasitaemia in the first half of pregnancy, uterine and umbilical artery blood flow, and foetal growth: a longitudinal Doppler ultrasound study. Malar J. 2012;11:319. doi: 10.1186/1475-2875-11-319.
    1. Machado Filho AC, da Costa EP, da Costa EP, Reis IS, Fernandes EA, Paim BV, et al. Effects of vivax malaria acquired before 20 weeks of pregnancy on subsequent changes in fetal growth. Am J Trop Med Hyg. 2014;90:371–376. doi: 10.4269/ajtmh.13-0285.
    1. Muller I, Bockarie M, Alpers M, Smith T. The epidemiology of malaria in Papua New Guinea. Trends Parasitol. 2003;19:253–259. doi: 10.1016/S1471-4922(03)00091-6.
    1. Stanisic D, Moore K, Baiwog F, Ura A, Clapham C, King C, et al. Risk factors for malaria and adverse birth outcomes in a prospective cohort of pregnant Papua New Guinea women. Trans R Soc Trop Med Hyg. 2015;109:313–324. doi: 10.1093/trstmh/trv019.
    1. Senn M, Baiwog F, Winmai J, Mueller I, Rogerson S, Senn N. Betel nut chewing during pregnancy, Madang province, Papua New Guinea. Drug Alcohol Depend. 2009;105:126–131. doi: 10.1016/j.drugalcdep.2009.06.021.
    1. Unger HW, Ome-Kaius M, Wangnapi RA, Umbers AJ, Hanieh S, Suen CS, et al. Sulphadoxine–pyrimethamine plus azithromycin for the prevention of low birthweight in Papua New Guinea: a randomised controlled trial. BMC Med. 2015;13:9. doi: 10.1186/s12916-014-0258-3.
    1. Allen SJ, Raiko A, O’Donnell A, Alexander ND, Clegg JB. Causes of preterm delivery and intrauterine growth retardation in a malaria endemic region of Papua New Guinea. Arch Dis Child Fetal Neonatal Ed. 1998;79:F135–F140. doi: 10.1136/fn.79.2.F135.
    1. Unger HW, Ome-Kaius M, Karl S, Singirok D, Siba P, Walker J, et al. Factors associated with ultrasound-aided detection of suboptimal fetal growth in a malaria-endemic area in Papua New Guinea. BMC Pregnancy Childbirth. 2015;15:83. doi: 10.1186/s12884-015-0511-6.
    1. Unger HW, Karl S, Wangnapi RA, Siba P, Mola G, Walker J, et al. Fetal size in a rural Melanesian population with minimal risk factors for growth restriction: an observational ultrasound study from Papua New Guinea. Am J Trop Med Hyg. 2014;92:178–186. doi: 10.4269/ajtmh.14-0423.
    1. Mueller I, Rogerson S, Mola GD, Reeder JC. A review of the current state of malaria among pregnant women in Papua New Guinea. PNG Med J. 2008;51:12–16.
    1. Child mortality estimates Papua New Guinea. . Accessed 15 May 2015.
    1. Loughna P, Chitty L, Evans T, Chudleigh T. Fetal size and dating: charts recommended for clinical obstetric practice. Ultrasound. 2009;17:161–167.
    1. DOH. National malaria treatment protocol. Port Moresby: Papua New Guinea National Department of Health; 2009.
    1. Rijken MJ, Rijken JA, Papageorghiou AT, Kennedy SH, Visser GH, Nosten F, et al. Malaria in pregnancy: the difficulties in measuring birthweight. BJOG. 2011;118:671–678. doi: 10.1111/j.1471-0528.2010.02880.x.
    1. Laman M, Moore BR, Benjamin JM, Yadi G, Bona C, Warrel J, et al. Artemisinin–naphthoquine versus artemether–lumefantrine for uncomplicated malaria in Papua New Guinean children: an open-label randomized trial. PLoS Med. 2014;11:e1001773. doi: 10.1371/journal.pmed.1001773.
    1. Rosanas-Urgell A, Mueller D, Betuela I, Barnadas C, Iga J, Zimmerman PA, et al. Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malar J. 2010;9:361. doi: 10.1186/1475-2875-9-361.
    1. Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis. 2007;7:105–117. doi: 10.1016/S1473-3099(07)70022-1.
    1. Mongelli M, Wilcox M, Gardosi J. Estimating the date of confinement: ultrasonographic biometry versus certain menstrual dates. Am J Obstet Gynecol. 1996;174:278–281. doi: 10.1016/S0002-9378(96)70408-8.
    1. Karl S, Li Wai Suen CS, Unger HW, Ome-Kaius M, Mola G, White L, et al. Preterm or not—an evaluation of estimates of gestational age in a cohort of women from rural papua new Guinea. PLoS ONE. 2015;10:e0124286. doi: 10.1371/journal.pone.0124286.
    1. Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology. 1991;181:129–133. doi: 10.1148/radiology.181.1.1887021.
    1. Ververs MT, Antierens A, Sackl A, Staderini N, Captier V. Which anthropometric indicators identify a pregnant woman as acutely malnourished and predict adverse birth outcomes in the humanitarian context? PLoS Curr Disasters. 2013
    1. Smith T, Vounatsou P. Estimation of infection and recovery rates for highly polymorphic parasites when detectability is imperfect, using hidden Markov models. Stat Med. 2003;22:1709–1724. doi: 10.1002/sim.1274.
    1. Barry AE, Schultz L, Senn N, Nale J, Kiniboro B, Siba PM, et al. High levels of genetic diversity of Plasmodium falciparum populations in Papua New Guinea despite variable infection prevalence. Am J Trop Med Hyg. 2013;88:718–725. doi: 10.4269/ajtmh.12-0056.
    1. Gosling RG, Dunbar G, King DH, Newman DL, Side CD, Woodcock JP, et al. The quantitative analysis of occlusive peripheral arterial disease by a non-intrusive ultrasonic technique. Angiology. 1971;22:52–55. doi: 10.1177/000331977102200109.
    1. Jacquemyn Y, Verdonk P. Doppler ultrasound of the fetomaternal circulation: a preliminary study on differences between ethnic groups. Clin Exp Obstet Gynecol. 2001;28:277–279.
    1. Prior T, Wild M, Mullins E, Bennett P, Kumar S. Sex specific differences in fetal middle cerebral artery and umbilical venous Doppler. PLoS ONE. 2013;8:e56933. doi: 10.1371/journal.pone.0056933.
    1. Royston P. Calculation of unconditional and conditional reference intervals for foetal size and growth from longitudinal measurements. Stat Med. 1995;14:1417–1436. doi: 10.1002/sim.4780141303.
    1. Cottrell G, Moussiliou A, Luty AJ, Cot M, Fievet N, Massougbodji A, et al. Submicroscopic Plasmodium falciparum infections are associated with maternal anemia, premature births, and low birth weight. Clin Infect Dis. 2015;60:1481–1488.
    1. Cohee LM, Kalilani-Phiri L, Boudova S, Joshi S, Mukadam R, Seydel KB, et al. Submicroscopic malaria infection during pregnancy and the impact of intermittent preventive treatment. Malar J. 2014;13:274. doi: 10.1186/1475-2875-13-274.
    1. Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol. 2014;12:833–840. doi: 10.1038/nrmicro3364.
    1. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165. doi: 10.1371/journal.pmed.1001165.
    1. Nosten F, McGready R, Simpson JA, Thwai KL, Balkan S, Cho T, et al. Effects of Plasmodium vivax malaria in pregnancy. Lancet. 1999;354:546–549. doi: 10.1016/S0140-6736(98)09247-2.
    1. Landis SH, Lokomba V, Ananth CV, Atibu J, Ryder RW, Hartmann KE, et al. Impact of maternal malaria and under-nutrition on intrauterine growth restriction: a prospective ultrasound study in Democratic Republic of Congo. Epidemiol Infect. 2009;137:294–304. doi: 10.1017/S0950268808000915.
    1. Belkacemi L, Nelson DM, Desai M, Ross MG. Maternal undernutrition influences placental-fetal development. Biol Reprod. 2010;83:325–331. doi: 10.1095/biolreprod.110.084517.
    1. Pfarrer C, Macara L, Leiser R, Kingdom J. Adaptive angiogenesis in placentas of heavy smokers. Lancet. 1999;354:303. doi: 10.1016/S0140-6736(99)01676-1.
    1. Chua CL, Robinson LJ, Baiwog F, Stanisic DI, Hamilton JA, Brown GV, et al. High numbers of circulating pigmented polymorphonuclear neutrophils as a prognostic marker for decreased birth weight during malaria in pregnancy. Int J Parasitol. 2014;45:107–111. doi: 10.1016/j.ijpara.2014.12.002.
    1. Benjamin AL. Community screening for high blood pressure among adults in urban and rural Papua New Guinea. P N G Med J. 2006;49:137–146.
    1. Maddocks I, Rovin L. A New Guinea population in which blood pressure appears to fall as age advances. P N G Med J. 2005;48:122–126.

Source: PubMed

3
購読する