Malaria preventive therapy in pregnancy and its potential impact on immunity to malaria in an area of declining transmission

Andrew Teo, Wina Hasang, Louise M Randall, Holger W Unger, Peter M Siba, Ivo Mueller, Graham V Brown, Stephen J Rogerson, Andrew Teo, Wina Hasang, Louise M Randall, Holger W Unger, Peter M Siba, Ivo Mueller, Graham V Brown, Stephen J Rogerson

Abstract

Background: Regular anti-malarial therapy in pregnancy, a pillar of malaria control, may affect malaria immunity, with therapeutic implications in regions of reducing transmission.

Methods: Plasma antibodies to leading vaccine candidate merozoite antigens and opsonizing antibodies to endothelial-binding and placental-binding infected erythrocytes were quantified in pregnant Melanesian women receiving sulfadoxine-pyrimethamine (SP) with chloroquine taken once, or three courses of SP with azithromycin.

Results: Malaria prevalence was low. Between enrolment and delivery, antibodies to recombinant antigens declined in both groups (p<0.0001). In contrast, median levels of opsonizing antibodies did not change, although levels for some individuals changed significantly. In multivariate analysis, the malaria prevention regimen did not influence antibody levels.

Conclusion: Different preventive anti-malarial chemotherapy regimens used during pregnancy had limited impact on malarial-immunity in a low-transmission region of Papua New Guinea.

Trial registrations: NCT01136850.

Figures

Fig. 1
Fig. 1
Levels of immunoglobulin G (IgG) antibody in PNG pregnant women against Plasmodium falciparum antigens over the course of one pregnancy. White bars- pregnant women recruited at first antenatal visit, grey bars pregnant women at delivery. Pregnant women on sulfadoxine-pyrimethamine (SP) and chloroquine (CQ) [N = 304], and on SP and azithromycin (AZ) [N = 277]. a Levels of IgG antibodies to schizont extract, PfRh2, MSP2, MSP3 and measles antigen presented as arbitrary units. b Levels of opsonising IgG antibodies to variant surface antigens of placental-binding and endothelial-binding IEs, presented as percentage of THP-1 cells that have ingested IESs (percentage phagocytosis). Wilcoxon signed-rank test, ****p < 0.0001. Columns represents IQR and error bars shows 95 % CI

References

    1. Brabin BJ. An analysis of malaria in pregnancy in Africa. Bull World Health Organ. 1983;61:1005–1016.
    1. Fried M, Nosten F, Brockman A, Brabin BJ, Duffy PE. Maternal antibodies block malaria. Nature. 1998;395:851–852. doi: 10.1038/27570.
    1. Ataíde R, Mwapasa V, Molyneux ME, Meshnick SR, Rogerson SJ. Antibodies that induce phagocytosis of malaria infected erythrocytes: effect of HIV infection and correlation with clinical outcomes. PLoS One. 2011;6:e22491. doi: 10.1371/journal.pone.0022491.
    1. Feng G, Simpson JA, Chaluluka E, Molyneux ME, Rogerson SJ. Decreasing burden of malaria in pregnancy in Malawian women and its relationship to use of intermittent preventive therapy or bed nets. PLoS One. 2010;5:e12012. doi: 10.1371/journal.pone.0012012.
    1. Aitken EH, Mbewe B, Luntamo M, Kulmala T, Beeson JG, Ashorn P, et al. Antibody to P. falciparum in pregnancy varies with intermittent preventive treatment regime and bed net use. PLoS One. 2012;7:e29874. doi: 10.1371/journal.pone.0029874.
    1. Intermittent preventive treatment with Azithromycin-containing Regimens in pregnant women in Papua New Guinea (IPTp in PNG) []
    1. Bulmer JN, Rasheed FN, Francis N, Morrison L, Greenwood BM. Placental malaria. I Pathological classification. Histopathology. 1993;22:211–218. doi: 10.1111/j.1365-2559.1993.tb00110.x.
    1. Teo A, Hasang W, Randall LM, Feng G, Bell L, Unger H, et al. Decreasing malaria prevalence and its potential consequences for immunity in pregnant women. J Infect Dis. 2014;210:1444–1455. doi: 10.1093/infdis/jiu264.
    1. Aitken EH, Mbewe B, Luntamo M, Maleta K, Kulmala T, Friso MJ, et al. Antibodies to chondroitin sulfate A-binding infected erythrocytes: dynamics and protection during pregnancy in women receiving intermittent preventive treatment. J Infect Dis. 2010;201:1316–1325. doi: 10.1086/651578.
    1. Fowkes FJ, McGready R, Cross NJ, Hommel M, Simpson JA, Elliott SR, et al. New insights into acquisition, boosting, and longevity of immunity to malaria in pregnant women. J Infect Dis. 2012;206:1612–1621. doi: 10.1093/infdis/jis566.
    1. Ampomah P, Stevenson L, Ofori MF, Barfod L, Hviid L. Kinetics of B cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites. J Immunol. 2014;192:5236–5244. doi: 10.4049/jimmunol.1400325.
    1. Osier FH, Feng G, Boyle MJ, Langer C, Zhou J, Richards JS, et al. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med. 2014;12:108. doi: 10.1186/1741-7015-12-108.
    1. Staalsoe T, Shulman CE, Dorman EK, Kawuondo K, Marsh K, Hviid L. Intermittent preventive sulfadoxine-pyrimethamine treatment of primigravidae reduces levels of plasma immunoglobulin G, which protects against pregnancy-associated Plasmodium falciparum malaria. Infect Immun. 2004;72:5027–5030. doi: 10.1128/IAI.72.9.5027-5030.2004.
    1. Unger HW, Ome-Kaius M, Wangnapi RA, Umbers AJ, Hanieh S, Suen CS, Robinson LJ, Rosanas-Urgell A, Wapling J, Lufele E, et al. Sulphadoxine-pyrimethamine plus azithromycin for the prevention of low birthweight in Papua New Guinea: a randomised controlled trial. BMC Med. 2015;13:9. doi: 10.1186/s12916-014-0258-3.
    1. Ndyomugyenyi R, Clarke SE, Hutchison CL, Hansen KS, Magnussen P. Efficacy of malaria prevention during pregnancy in an area of low and unstable transmission: an individually-randomised placebo-controlled trial using intermittent preventive treatment and insecticide-treated nets in the Kabale Highlands, southwestern Uganda. Trans R Soc Trop Med Hyg. 2011;105:607–616. doi: 10.1016/j.trstmh.2011.07.012.
    1. Menendez C, Bardaji A, Sigauque B, Romagosa C, Sanz S, Serra-Casas E, et al. A randomized placebo-controlled trial of intermittent preventive treatment in pregnant women in the context of insecticide treated nets delivered through the antenatal clinic. PLoS One. 2008;3:e1934. doi: 10.1371/journal.pone.0001934.

Source: PubMed

3
購読する