Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights

Afshin A Divani, Sasan Andalib, Mario Di Napoli, Simona Lattanzi, M Shazam Hussain, José Biller, Louise D McCullough, M Reza Azarpazhooh, Alina Seletska, Stephan A Mayer, Michel Torbey, Afshin A Divani, Sasan Andalib, Mario Di Napoli, Simona Lattanzi, M Shazam Hussain, José Biller, Louise D McCullough, M Reza Azarpazhooh, Alina Seletska, Stephan A Mayer, Michel Torbey

Abstract

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health threat. Some COVID-19 patients have exhibited widespread neurological manifestations including stroke. Acute ischemic stroke, intracerebral hemorrhage, and cerebral venous sinus thrombosis have been reported in patients with COVID-19. COVID-19-associated coagulopathy is increasingly recognized as a result of acute infection and is likely caused by inflammation, including inflammatory cytokine storm. Recent studies suggest that axonal transport of SARS-CoV-2 to the brain can occur via the cribriform plate adjacent to the olfactory bulb that may lead to symptomatic anosmia. The internalization of SARS-CoV-2 is mediated by the binding of the spike glycoprotein of the virus to the angiotensin-converting enzyme 2 (ACE2) on cellular membranes. ACE2 is expressed in several tissues including lung alveolar cells, gastrointestinal tissue, and brain. The aim of this review is to provide insights into the clinical manifestations and pathophysiological mechanisms of stroke in COVID-19 patients. SARS-CoV-2 can down-regulate ACE2 and, in turn, overactivate the classical renin-angiotensin system (RAS) axis and decrease the activation of the alternative RAS pathway in the brain. The consequent imbalance in vasodilation, neuroinflammation, oxidative stress, and thrombotic response may contribute to the pathophysiology of stroke during SARS-CoV-2 infection.

Keywords: ACE2; COVID-19; Endothelial damage; Pandemic; Renin-angiotensin system; SARS-CoV-2; Stroke.

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interest with regard to this paper.

Copyright © 2020 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Schematic process of endocytosis of SARS-COV-2, proliferation of the virus inside the cell, and effect of virus upon RAS. Having been primed by TMPRSS2, SARS-COV-2’s spike glycoprotein binds to ACE2. The virus enters the cell and is proliferated. SARS-COV-2 downregulates ACE2, which in turn under-activates the RAS alternative axis (ACE2-Ang-(1-7)-Mas). Under-activation of the alternative axis gives rise to over-activation of the classical RAS axis (ACE-Ang II-AT1R). The consequent imbalance in vasodilation, neuroinflammation, oxidative stress, and thrombotic response can contribute to the pathophysiology of stroke during SARS-CoV-2 infection. Abbreviations: SARS-COV-2: severe acute respiratory syndrome coronavirus 2, RAS: renin-angiotensin system, ACE2: angiotensin-converting enzyme 2, TMPRSS2: Transmembrane protease, serine 2, Ang: angiotensin, Mas: Mas receptor, AT1R: angiotensin 1 receptor.
Fig. 2
Fig. 2
Non-contrast head CT showing posterior fossa ICH with acute obstructive hydrocephalus in a COVID-19 positive patient.

References

    1. Zhou P., Yang X.-L., Wang X.-G. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Wu A., Peng Y., Huang B. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27:325–328. doi: 10.1016/j.chom.2020.02.001.
    1. He F., Deng Y., Li W. Coronavirus disease 2019: What we know? J Med Virol. 2020 doi: 10.1002/jmv.25766. [ahead of print]
    1. Wang Y., Wang Y., Chen Y. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020;92:568–576. doi: 10.1002/jmv.25748.
    1. WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. . Published Dec 31, 2003. Accessed April 28, 2020.
    1. WHO. Middle East respiratory syndrome coronavirus (MERS-CoV). . Accessed May 18, 2020.
    1. Wang D., Hu B., Hu C. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. WHO. Coronavirus (COVID-19). . Published 2020. Accessed April 28, 2020.
    1. Liu J., Liao X., Qian S. Community transmission of severe acute respiratory syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020;26 doi: 10.3201/eid2606.200239. [ahead of print]
    1. Chan J.F.-W., Yuan S., Kok K.-H. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9.
    1. Li Q., Guan X., Wu P. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Eng J Med. 2020;382:1199–1207. doi: 10.1056/NEJMoa2001316.
    1. Huang C., Wang Y., Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/s0140-6736(20)30183-5.
    1. Ong S.W.X., Tan Y.K., Chia P.Y. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020 doi: 10.1001/jama.2020.3227. [ahead of print]
    1. Xia J., Tong J., Liu M. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol. 2020;92:589–594. doi: 10.1002/jmv.25725.
    1. Chen T., Wu D., Chen H. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091.
    1. Bohmwald K., Gálvez N.M.S., Ríos M. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. doi: 10.3389/fncel.2018.00386.
    1. Robinson C.P., Busl K.M. Neurologic manifestations of severe respiratory viral contagions. Crit Care Explor. 2020;2:e0107. doi: 10.1097/CCE.0000000000000107.
    1. Helms J., Kremer S., Merdji H. Neurologic features in severe SARS-CoV-2 Infection. N Eng J Med. 2020 doi: 10.1056/NEJMc2008597. [ahead of print]
    1. Toscano G., Palmerini F., Ravaglia S. Guillain–Barré syndrome associated with SARS-CoV-2. N Eng J Med. 2020 doi: 10.1056/NEJMc2009191.
    1. Zhao H., Shen D., Zhou H. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19:383–384. doi: 10.1016/S1474-4422(20)30109-5.
    1. Giacomelli A., Pezzati L., Conti F. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. 2020;70 doi: 10.1093/cid/ciaa330. [ahead of print]
    1. Menni C, Valdes A, Freydin MB, et al. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. medRxiv2020:2020.2004.2005.20048421. doi:10.1101/2020.04.05.20048421.
    1. Madjid M., Safavi-Naeini P., Solomon S.D. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1286. [ahead of print]
    1. Mao L., Jin H., Wang M. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020 doi: 10.1001/jamaneurol.2020.1127. [ahead of print]
    1. Zhang Y., Xiao M., Zhang S. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Eng J Med. 2020;382:e38. doi: 10.1056/NEJMc2007575.
    1. Conti P., Ronconi G., Caraffa A. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34 doi: 10.23812/CONTI-E. [ahead of print]
    1. Hamming I., Timens W., Bulthuis M.L. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637. doi: 10.1002/path.1570.
    1. Arabi Y.M., Balkhy H.H., Hayden F.G. Middle east respiratory syndrome. N Eng J Med. 2017;376:584–594. doi: 10.1056/NEJMsr1408795.
    1. Tang N., Li D., Wang X. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Xie Y., Wang X., Yang P. COVID-19 complicated by acute pulmonary embolism. Radiol Cardiothorac Imaging. 2020;2 doi: 10.1148/ryct.2020200067.
    1. Ullah W., Saeed R., Sarwar U. COVID-19 complicated by acute pulmonary embolism and right-sided heart failure. JACC Case Rep. 2020 doi: 10.1016/j.jaccas.2020.04.008. [ahead of print]
    1. Middeldorp S., Coppens M., van Haaps T.F. Incidence of venous thromboembolism in hospitalized patients with COVID-19. Preprints. 2020;2020040345 doi: 10.20944/preprints202004.0345.v1.
    1. Klok F.A., Kruip M., van der Meer N.J.M. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020 doi: 10.1016/j.thromres.2020.04.013. [ahead of print]
    1. Tang N., Bai H., Chen X. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020 doi: 10.1111/jth.14817. [ahead of print]
    1. Levi M., Toh C.H., Thachil J. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol. 2009;145:24–33. doi: 10.1111/j.1365-2141.2009.07600.x.
    1. Guan W.J., Ni Z.Y., Hu Y. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 doi: 10.1056/NEJMoa2002032. [ahead of print]
    1. Han H., Yang L., Liu R. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020 doi: 10.1515/cclm-2020-0188. [ahead of print]
    1. Magro C., Mulvey J.J., Berlin D. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020 doi: 10.1016/j.trsl.2020.04.007. [ahead of print]
    1. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020 doi: 10.1038/s41577-020-0305-6. [ahead of print]
    1. Schett G., Sticherling M., Neurath M.F. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020 doi: 10.1038/s41577-020-0312-7. [ahead of print]
    1. Marchetti C., Swartzwelter B., Koenders M.I. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res Ther. 2018;20:169. doi: 10.1186/s13075-018-1664-2.
    1. McNab F., Mayer-Barber K., Sher A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15:87–103. doi: 10.1038/nri3787.
    1. Herold T, Jurinovic V, Arnreich C, et al. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRxiv2020:2020.2004.2001.20047381. doi:10.1101/2020.04.01.20047381.
    1. Elkind M.S.V., Ramakrishnan P., Moon Y.P. Infectious burden and risk of stroke: the northern Manhattan study. Arch Neurol. 2010;67:33–38. doi: 10.1001/archneurol.2009.271.
    1. Esenwa C.C., Elkind M.S. Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke. Nat Rev Neurol. 2016;12:594–604. doi: 10.1038/nrneurol.2016.125.
    1. Shaafi S., Sharifipour E., Rahmanifar R. Interleukin-6, a reliable prognostic factor for ischemic stroke. Iran J Neurol. 2014;13:70–76.
    1. Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. .e278.
    1. Wrapp D., Wang N., Corbett K.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507.
    1. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562–569. doi: 10.1038/s41564-020-0688-y.
    1. Xu H., Zhong L., Deng J. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12:8. doi: 10.1038/s41368-020-0074-x.
    1. Wu C, Zheng S, Chen Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCoV, in the nasal tissue. medRxiv2020:2020.2002.2011.20022228. doi:10.1101/2020.02.11.20022228.
    1. Wu C., Zheng M. Single-cell RNA expression profiling shows that ACE2, the putative receptor of COVID-2019, has significant expression in nasal and mouth tissue, and is co-expressed with TMPRSS2 and not co-expressed with SLC6A19 in the tissues. BMC Infect Dis. 2020 doi: 10.21203/-16992/v1. Preprints.
    1. Baig A.M., Khaleeq A., Ali U. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995–998. doi: 10.1021/acschemneuro.0c00122.
    1. Dahm T., Rudolph H., Schwerk C. Neuroinvasion and inflammation in viral central nervous system infections. Mediators Inflamm. 2016;2016 doi: 10.1155/2016/8562805.
    1. Swanson P.A., II, McGavern D.B. Portals of viral entry into the central nervous system. In: Dorovini-Zis K., editor. The Blood-Brain Barrier in Health and Disease, Volume Two: Pathophysiology and Pathology. CRC Press; Cleveland, OH: 2015.
    1. Eliezer M., Hautefort C., Hamel A.L. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020 doi: 10.1001/jamaoto.2020.0832. [ahead of print]
    1. Abiodun O.A., Ola M.S. Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J Biol Sci. 2020;27:905–912. doi: 10.1016/j.sjbs.2020.01.026.
    1. Schelling P., Hutchinson J.S., Ganten U. Impermeability of the blood-cerebrospinal fluid barrier for angiotensin II in rats. Clin Sci Mol Med Suppl. 1976;3:399s–402s. doi: 10.1042/cs051399s.
    1. Harding J.W., Sullivan M.J., Hanesworth J.M. Inability of [125I]Sar1, Ile8-Angiotensin II to move between the blood and cerebrospinal fluid compartments. J Neurochem. 1988;50:554–557. doi: 10.1111/j.1471-4159.1988.tb02946.x.
    1. Ferguson A.V., Washburn D.L.S., Latchford K.J. Hormonal and neurotransmitter roles for angiotensin in the regulation of central autonomic function. Exp Biol Med. 2001;226:85–96. doi: 10.1177/153537020122600205.
    1. Fry M., Ferguson A.V. The sensory circumventricular organs: Brain targets for circulating signals controlling ingestive behavior. Physiol Behav. 2007;91:413–423. doi: 10.1016/j.physbeh.2007.04.003.
    1. Lavoie J.L., Cassell M.D., Gross K.W. Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension. 2004;43:1116–1119. doi: 10.1161/01.hyp.0000125143.73301.94.
    1. Grobe J.L., Buehrer B.A., Hilzendeger A.M. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension. 2011;57:600–607. doi: 10.1161/hypertensionaha.110.165829.
    1. Milsted A., Barna B.P., Ransohoff R.M. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA. Proc Natl Acad Sci USA. 1990;87:5720–5723. doi: 10.1073/pnas.87.15.5720.
    1. Sherrod M., Liu X., Zhang X. Nuclear localization of angiotensinogen in astrocytes. Am J Physiol Regul Integr Comp Physiol. 2005;288:R539–R546. doi: 10.1152/ajpregu.00594.2004.
    1. Bodiga V.L., Bodiga S. Renin angiotensin system in cognitive function and dementia. Asian J Neurosci. 2013;2013 doi: 10.1155/2013/102602.
    1. Arroja M.M.C., Reid E., McCabe C. Therapeutic potential of the renin angiotensin system in ischaemic stroke. Exp Transl Stroke Med. 2016;8:8. doi: 10.1186/s13231-016-0022-1.
    1. Wright J.W., Harding J.W. The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch. 2013;465:133–151. doi: 10.1007/s00424-012-1102-2.
    1. Feng Y., Xia H., Santos R.A. Angiotensin-converting enzyme 2: a new target for neurogenic hypertension. Exp Physiol. 2010;95:601–606. doi: 10.1113/expphysiol.2009.047407.
    1. Walther T., Olah L., Harms C. Ischemic injury in experimental stroke depends on angiotensin II. FASEB J. 2002;16:169–176. doi: 10.1096/fj.01-0601com.
    1. Inaba S., Iwai M., Tomono Y. Exaggeration of focal cerebral ischemia in transgenic mice carrying human renin and human angiotensinogen genes. Stroke. 2009;40:597–603. doi: 10.1161/STROKEAHA.108.519801.
    1. Stenman E., Edvinsson L. Cerebral ischemia enhances vascular angiotensin AT1 receptor-mediated contraction in rats. Stroke. 2004;35:970–974. doi: 10.1161/01.STR.0000121642.53822.58.
    1. Xiao L., Gao L., Zucker I.H. Angiotensin-converting enzyme 2 attenuates the angiotensin II-induced upregulation of angiotensin II type 1 receptor in CATH. A neurons. Hypertension. 2009:E70–E71. Lippincott Williams & WilkinsI 530 Walnut St, Philadelphia, PA 19106-3621 USA.
    1. Xia H., Feng Y., Obr T.D. Angiotensin II Type 1 Receptor–mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension. 2009;53:210–216. doi: 10.1161/HYPERTENSIONAHA.108.123844.
    1. Xia H., Suda S., Bindom S. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PloS One. 2011;6:e22682. doi: 10.1371/journal.pone.0022682.
    1. Chen J., Xiao X., Chen S. Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. Hypertension. 2013;61:681–689. doi: 10.1161/HYPERTENSIONAHA.111.00202.
    1. Jiang T., Yu J.T., Zhu X.C. Angiotensin-(1–7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol. 2014;171:4222–4232. doi: 10.1111/bph.12770.
    1. Chen J., Zhao Y., Chen S. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550–558. doi: 10.1016/j.neuropharm.2014.01.004.
    1. Fraga-Silva R.A., Sorg B.S., Wankhede M. ACE2 activation promotes antithrombotic activity. Mol Med. 2010;16:210–215. doi: 10.2119/molmed.2009.00160.
    1. Kucharewicz I., Pawlak R., Matys T. Antithrombotic effect of captopril and losartan is mediated by Angiotensin-(1-7) Hypertension. 2002;40:774–779. doi: 10.1161/01.HYP.0000035396.27909.40.
    1. Fraga-Silva R.A., Pinheiro S.V.B., Gonçalves A.C.C. The antithrombotic effect of angiotensin-(1-7) involves mas-mediated NO release from platelets. Mol Med. 2008;14:28–35. doi: 10.2119/2007-00073.
    1. Zhang F., Ren J., Chan K. Angiotensin-(1–7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells. Biochem Biophys Res Commun. 2013;430:642–646. doi: 10.1016/j.bbrc.2012.11.098.
    1. Liang B., Wang X., Zhang N. Angiotensin-(1-7) attenuates angiotensin II-induced ICAM-1, VCAM-1, and MCP-1 expression via the MAS receptor through suppression of P38 and NF-κB pathways in HUVECs. Cell Physiol Biochem. 2015;35:2472–2482. doi: 10.1159/000374047.
    1. Jiang T., Gao L., Lu J. ACE2-Ang-(1-7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol. 2013;11:209–217. doi: 10.2174/1570159×11311020007.
    1. Dong B., Zhang C., Feng J.B. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:1270–1276. doi: 10.1161/ATVBAHA.108.164715.
    1. Bennion D.M., Haltigan E., Regenhardt R.W. Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr Hypertens Rep. 2015;17:3. doi: 10.1007/s11906-014-0512-2.
    1. Hofmann H., Geier M., Marzi A. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319:1216–1221. doi: 10.1016/j.bbrc.2004.05.114.
    1. Li W., Moore M.J., Vasilieva N. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145.
    1. Chawla L.S., Chen S., Bellomo R. Angiotensin converting enzyme defects in shock: implications for future therapy. Crit Care. 2018;22:274. doi: 10.1186/s13054-018-2202-y.
    1. Koka V., Huang X.R., Chung A.C. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172:1174–1183. doi: 10.2353/ajpath.2008.070762.
    1. Fernandes T., Hashimoto N.Y., Magalhães F.C. Aerobic exercise training–induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin II, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7) Hypertension. 2011;58:182–189.
    1. Busse L.W., Chow J.H., McCurdy M.T. COVID-19 and the RAAS—a potential role for angiotensin II? Crit Care. 2020;24:136. doi: 10.1186/s13054-020-02862-1.
    1. Zhang H., Penninger J.M., Li Y. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590. doi: 10.1007/s00134-020-05985-9.
    1. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 2020 doi: 10.1002/ddr.21656. [ahead of print]
    1. Ghadhanfar E., Alsalem A., Al-Kandari S. The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction. Reprod Biol Endocrinol. 2017;15:97. doi: 10.1186/s12958-017-0316-8.
    1. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8:e2. doi: 10.1016/S2213-2600(20)30116-8.
    1. Zhang P., Zhu L., Cai J. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res. 2020 doi: 10.1161/CIRCRESAHA.120.317134. [ahead of print]
    1. Li F., Li W., Farzan M. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309:1864–1868. doi: 10.1126/science.1116480.
    1. Kuba K., Imai Y., Rao S. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11:875–879. doi: 10.1038/nm1267.
    1. Imai Y., Kuba K., Rao S. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. doi: 10.1038/nature03712.
    1. Zhang R., Pan Y., Fanelli V. Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway. Am J Respir Crit Care Med. 2015;192:315–323. doi: 10.1164/rccm.201412-2326OC.
    1. Wösten-van Asperen R.M., Lutter R., Specht P.A. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol. 2011;225:618–627. doi: 10.1002/path.2987.
    1. Haschke M., Schuster M., Poglitsch M. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52:783–792. doi: 10.1007/s40262-013-0072-7.
    1. Khan A., Benthin C., Zeno B. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21:234. doi: 10.1186/s13054-017-1823-x.
    1. Wadman M., Couzin-Frankel J., Kaiser J. A rampage through the body. Science. 2020;368:356–360. doi: 10.1126/science.368.6489.356.
    1. Zhao J., Rudd A., Liu R. Challenges and potential solutions of stroke care during the Coronavirus Disease 2019 (COVID-19) outbreak. Stroke. 2020 doi: 10.1161/strokeaha.120.029701. [ahead of print]
    1. Sharifi-Razavi A., Karimi N., Rouhani N. COVID 19 and Intra cerebral hemorrhage: causative or coincidental. New Microbes New Infect. 2020;35 doi: 10.1016/j.nmni.2020.100669.
    1. Morelli N., Rota E., Terracciano C. The baffling case of ischemic stroke disappearance from the casualty department in the COVID-19 era. Eur Neurol. 2020 doi: 10.1159/000507666. [ahead of print]
    1. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med. 2020;382:e60

Source: PubMed

3
購読する