Phase III, placebo-controlled, randomized, double-blind trial of tableted, therapeutic TB vaccine (V7) containing heat-killed M. vaccae administered daily for one month

Aldar S Bourinbaiar, Uyanga Batbold, Yuri Efremenko, Munkhburam Sanjagdorj, Dmytro Butov, Narantsetseg Damdinpurev, Elena Grinishina, Otgonbayar Mijiddorj, Mikola Kovolev, Khaliunaa Baasanjav, Tetyana Butova, Natalia Prihoda, Ochirbat Batbold, Larisa Yurchenko, Ariungerel Tseveendorj, Olga Arzhanova, Erkhemtsetseg Chunt, Hanna Stepanenko, Nina Sokolenko, Natalia Makeeva, Marina Tarakanovskaya, Vika Borisova, Alan Reid, Valeryi Kalashnikov, Peter Nyasulu, Satria A Prabowo, Vichai Jirathitikal, Allen I Bain, Cynthia Stanford, John Stanford, Aldar S Bourinbaiar, Uyanga Batbold, Yuri Efremenko, Munkhburam Sanjagdorj, Dmytro Butov, Narantsetseg Damdinpurev, Elena Grinishina, Otgonbayar Mijiddorj, Mikola Kovolev, Khaliunaa Baasanjav, Tetyana Butova, Natalia Prihoda, Ochirbat Batbold, Larisa Yurchenko, Ariungerel Tseveendorj, Olga Arzhanova, Erkhemtsetseg Chunt, Hanna Stepanenko, Nina Sokolenko, Natalia Makeeva, Marina Tarakanovskaya, Vika Borisova, Alan Reid, Valeryi Kalashnikov, Peter Nyasulu, Satria A Prabowo, Vichai Jirathitikal, Allen I Bain, Cynthia Stanford, John Stanford

Abstract

Objective: Immunotherapy of tuberculosis (TB) to shorten treatment duration represents an unmet medical need. Orally delivered, tableted TB vaccine (V7) containing heat-killed Mycobacterium vaccae (NCTC 11659) has been demonstrated in prior clinical studies to be safe and fast-acting immune adjunct.

Methods: The outcome of Phase III trial of V7 containing 10 µg of hydrolyzed M. vaccae was evaluated in 152 patients randomized at 2:1 ratio: V7 (N = 100), placebo (N = 52). Both arms received conventional 1st or 2nd line TB drugs co-administered with daily pill of V7 or placebo.

Results: After one month mycobacterial clearance was observed in 68% (P < 0.0001) and 23.1% (P = 0.04) of patients on V7 and placebo. Stratified conversion rates in V7 recipients with drug-sensitive and multidrug-resistant TB were 86.7% and 55.6% vs 27.2% and 15% in placebo. Patients on V7 gained on average 2.4 kg (P < 0.0001) vs 0.3 kg (P = 0.18) in placebo. Improvements in hemoglobin levels, erythrocyte sedimentation rate and leukocyte counts were significantly better than in controls. Liver function tests revealed that V7 can prevent chemotherapy-induced hepatic damage.

Conclusion: Oral M. vaccae is safe, can overcome TB-associated weight loss and inflammation, reduce hepatotoxicity of TB drugs, improve sputum conversion three-fold OR 3.15; 95%CI (2.3,4.6), and cut treatment length by at least six-fold. Longer follow-up studies might be needed to further substantiate our findings (Clinicaltrials.gov: NCT01977768).

Keywords: Immunotherapy; MDR; Mycobacterium vaccae; Therapeutic vaccine; XDR.

Conflict of interest statement

ASB, VB, MT, VK, VJ, AR and AIB are officers of Immunitor and affiliated companies. Late John Stanford and his colleague and spouse Cynthia Stanford are founders and owners of BioEos company. Remaining authors declare no conflict of interest.

© 2019 The Author(s).

Figures

Fig. 1
Fig. 1
Sputum clearance percentage in V7 and placebo arms depending on TB form. Post-treatment sputum conversion rates, expressed in % on the Y-axis, among patients with DS-TB; MDR-TB; DS-TB/HIV; MDR-TB/HIV and XDR-TB after one month on V7 vs. placebo had the following P values by Fisher's exact test in 2 × 2 contingency table: P < 0.0001; P = 0.0021; P = 0.077; P = 1.0 and P = 1.0 respectively.
Fig. 2
Fig. 2
The proportion of patients who responded favorably to treatment. The proportion expressed in % on Y-axis. The P values resulting from comparison of V7 vs. placebo analyzed by Chi-square 2 × 2 contingency table are as follows: HB (P = 0.015); ESR (P = 0.013); WBC (P = 0.43); Lymphocytes (P=0.45); ALT (P = 0.03); AST (P = 0.025); Bilirubin (P = 0.35); Protein (P = 0.006); Weight (P < 0.0001); BMI (P < 0.0001). The statistical analysis of other data relating to each of above shown parameter are described in detail in the Results, see paragraphs 3.3–3.8.

References

    1. Dubrovina I, Miskinis K, Lyepshina S, Yann Y, Hoffmann H, Zaleskis R, Nunn P, Zignol M. Drug-resistant tuberculosis and HIV in Ukraine: a threatening convergence of two epidemics? Int J Tuberc Lung Dis. 2008;12(7):756–762.
    1. WHO Country Report: TB situation in Ukraine 2017 .
    1. Pavlenko E, Barbova A, Hovhannesyan A, Tsenilova Z, Slavuckij A, Shcherbak-Verlan B, Zhurilo A, Vitek E, Skenders G, Sela I, Cabibbe AM, Cirillo DM, de Colombani P, Dara M, Dean A, Zignol M, Dadu A. Alarming levels of multidrug-resistant tuberculosis in Ukraine: results from the first national survey. Int J Tuberc Lung Dis. 2018;22(2):197–205.
    1. WPRO Tuberculosis.
    1. Buyankhishig B, Naranbat N, Mitarai S, Rieder HL. Nationwide survey of anti-tuberculosis drug resistance in Mongolia. Int J Tuberc Lung Dis. 2011;15(9):1201–1205.
    1. Nunn AJ, Phillips PPJ, Meredith SK, Chiang CY, Conradie F, Dalai D, van Deun A, Dat PT, Lan N, Master I, Mebrahtu T, Meressa D, Moodliar R, Ngubane N, Sanders K, Squire SB, Torrea G, Tsogt B, Rusen ID, STREAM Study Collaborators A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380(13):1201–1213.
    1. Bourinbaiar AS, Mezentseva MV, Butov DA, Nyasulu PS, Efremenko YV, Jirathitikal V, Mishchenko VV, Kutsyna GA. Immune approaches in tuberculosis therapy: a brief overview. Expert Rev Anti Infect Ther. 2012;10(3):381–389.
    1. Gröschel MI, Prabowo SA, Cardona PJ, Stanford JL, van der Werf TS. Therapeutic vaccines for tuberculosis–a systematic review. Vaccine. 2014;32(26):3162–3168.
    1. Bönicke R, Juhasz SE. Beschreibung der neuen species Mycobacterium vaccae n. sp. Zentralblatt fur Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene. Abteilung I. 1964;192:133–135.
    1. Huang CY, Hsieh WY. Efficacy of Mycobacterium vaccae immunotherapy for patients with tuberculosis: a systematic review and meta-analysis. Hum Vaccin Immunother. 2017;13(9):1960–1971.
    1. de Bruyn G, Garner P. Mycobacterium vaccae immunotherapy for treating tuberculosis. Cochrane Database Syst Rev. 2003;(1)
    1. Dlugovitzky D, Notario R, Martinel-Lamas D, Fiorenza G, Farroni M, Bogue C, Stanford C, Stanford J. Immunotherapy with oral, heat-killed, Mycobacterium vaccae in patients with moderate to advanced pulmonary tuberculosis. Immunotherapy. 2010;2(2):159–169.
    1. Butov DA, Efremenko YV, Prihoda ND, Zaitzeva SI, Yurchenko LV, Sokolenko NI, Butova TS, Stepanenko AL, Kutsyna GA, Jirathitikal V, Bourinbaiar AS. Randomized, placebo-controlled Phase II trial of heat-killed Mycobacterium vaccae (Immodulon batch) formulated as an oral pill (V7) Immunotherapy. 2013;5(10):1047–1054.
    1. Efremenko YV, Butov DA, Prihoda ND, Zaitzeva SI, Yurchenko LV, Sokolenko NI, Butova TS, Stepanenko AL, Kutsyna GA, Jirathitikal V, Bourinbaiar AS. Randomized, placebo-controlled phase II trial of heat-killed Mycobacterium vaccae (Longcom batch) formulated as an oral pill (V7) Hum Vaccin Immunother. 2013;9(9):1852–1856.
    1. Bloom BR, Atun R, Cohen T, Dye C, Fraser H, Gomez GB, Knight G, Murray M, Nardell E, Rubin E, Salomon J, Vassall A, Volchenkov G, White R, Wilson D, Yadav P. Tuberculosis. In: Holmes KK, Bertozzi S, Bloom BR, Jha P, editors. Major infectious diseases. 3rd edition. The International Bank for Reconstruction and Development / The World Bank; Washington (DC): 2017. pp. 233–311. Chapter 11PMID: 30212088.
    1. Masonou T, Hokey DA, Lahey T, Halliday A, Berrocal-Almanza LC, Wieland-Alter WF, Arbeit RD, Lalvani A, von Reyn CF. CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: a randomized, placebo-controlled trial. PLoS One. 2019;14(5)
    1. Nouioui I, Brunet LR, Simpson D, Klenk HP, Goodfellow M. Description of a novel species of fast growing mycobacterium: Mycobacterium kyogaense sp. nov., a scotochromogenic strain received as Mycobacterium vaccae. Int J Syst Evol Microbiol. 2018;68(12):3726–3734.
    1. Weng H, Huang JY, Meng XY, Li S, Zhang GQ. Adjunctive therapy of Mycobacterium vaccae vaccine in the treatment of multidrug-resistant tuberculosis: a systematic review and meta-analysis. Biomed Rep. 2016;4(5):595–600.
    1. Zheng J, Chen L, Liu L, Li H, Liu B, Zheng D, Liu T, Dong J, Sun L, Zhu Y, Yang J, Zhang X, Jin Q. Proteogenomic analysis and discovery of immune antigens in Mycobacterium vaccae. Mol Cell Proteom. 2017;16(9):1578–1590.
    1. Hoyt KJ, Sarkar S, White L, Joseph NM, Salgame P, Lakshminarayanan S, Muthaiah M, Vinod Kumar S, Ellner JJ, Roy G, Jr Horsburgh CR, Hochberg NS. Effect of malnutrition on radiographic findings and mycobacterial burden in pulmonary tuberculosis. PLoS One. 2019;14(3)
    1. Chandra RK. Nutrient supplementation as adjunct therapy in pulmonary tuberculosis. Int J Vitam Nutr Res. 2004;74(2):144–146.
    1. Phan MN, Guy ES, Nickson RN, Kao CC. Predictors and patterns of weight gain during treatment for tuberculosis in the United States of America. Int J Infect Dis. 2016;53:1–5.
    1. Butov DA, Efremenko YV, Prihoda ND, Yurchenko LI, Sokolenko NI, Arjanova OV, Stepanenko AL, Butova TS, Zaitzeva SS, Jirathitikal V, Bourinbaiar AS, Kutsyna GA. Adjunct immune therapy of first-diagnosed TB, relapsed TB, treatment-failed TB, multidrug-resistant TB and TB/HIV. Immunotherapy. 2012;4(7):687–695.
    1. Batbold U, Butov DO, Kutsyna GA, Damdinpurev N, Grinishina EA, Mijiddorj O, Kovolev ME, Baasanjav K, Butova TS, Sandagdorj M, Batbold O, Tseveendorj A, Chunt E, Zaitzeva SI, Stepanenko HL, Makeeva NI, Mospan IV, Pylypchuk VS, Rowe JL, Nyasulu P, Jirathitikal V, Bain AI, Tarakanovskaya MG, Bourinbaiar AS. Double-blind, placebo-controlled, 1:1 randomized Phase III clinical trial of Immunoxel honey lozenges as an adjunct immunotherapy in 269 patients with pulmonary tuberculosis. Immunotherapy. 2017;9(1):13–24.
    1. Rohini K, Surekha Bhat M, Srikumar PS, Mahesh Kumar A. Assessment of hematological parameters in pulmonary tuberculosis patients. Indian J Clin Biochem. 2016;31(3):332–335.
    1. Isanaka S, Mugusi F, Urassa W, Willett WC, Bosch RJ, Villamor E, Spiegelman D, Duggan C, Fawzi WW. Iron deficiency and anemia predict mortality in patients with tuberculosis. J Nutr. 2012;142(2):350–357.
    1. Yew WW, Leung CC. Antituberculosis drugs and hepatotoxicity. Respirology. 2006;11(6):699–707.
    1. Kosmachevskaya OV, Topunov AF. Alternate and additional functions of erythrocyte hemoglobin. Biochemistry (Mosc) 2018;83(12):1575–1593.
    1. Smith DG, Martinelli R, Besra GS, Illarionov PA, Szatmari I, Brazda P, Allen MA, Xu W, Wang X, Nagy L, Dowell RD, Rook GAW, Rosa Brunet L, Lowry CA. Identification and characterization of a novel anti-inflammatory lipid isolated from Mycobacterium vaccae, a soil-derived bacterium with immunoregulatory and stress resilience properties. Psychopharmacology (Berl) 2019;236(5):1653–1670.
    1. Conesa-Botella A, Meintjes G, Coussens AK, van der Plas H, Goliath R, Schutz C, Moreno-Reyes R, Mehta M, Martineau AR, Wilkinson RJ, Colebunders R, Wilkinson KA. Corticosteroid therapy, vitamin D status, and inflammatory cytokine profile in the HIV-tuberculosis immune reconstitution inflammatory syndrome. Clin Infect Dis. 2012;55(7):1004–1011.
    1. Kroesen VM, Gröschel MI, Martinson N, Zumla A, Maeurer M, van der Werf TS, Vilaplana C. Non-steroidal anti-inflammatory drugs as host-directed therapy for tuberculosis: A systematic review. Front Immunol. 2017;8:772.
    1. Silin DS, Lyubomska OV, Jirathitikal V, Bourinbaiar AS. Oral vaccination: where we are? Expert Opin Drug Deliv. 2007;4(4):323–340.
    1. Prabowo SA, Zelmer A, Stockdale L, Ojha U, Smith SG, Seifert K, Fletcher HA. Historical BCG vaccination combined with drug treatment enhances inhibition of mycobacterial growth ex vivo in human peripheral blood cells. Sci Rep. 2019;9(1):4842.
    1. Devadatta S, Radhakrishna S, Fox W, Mitchison DA, Rajagopalan S, Sivasubramanian S, Stott H. Comparative value of sputum smear examination and culture examination in assessing the progress of tuberculous patients receiving chemotherapy. Bull World Health Organ. 1966;34(4):573–587.
    1. Zumla A, Rao M, Wallis RS, Kaufmann SH, Rustomjee R, Mwaba P, Vilaplana C, Yeboah-Manu D, Chakaya J, Ippolito G, Azhar E, Hoelscher M, Maeurer M. Host-Directed Therapies Network consortium. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis. 2016;16(4):e47–e63.
    1. Robertson BD, Altmann D, Barry C, Bishai B, Cole S, Dick T, Duncan K, Dye C, Ehrt S, Esmail H, Flynn J, Hafner R, Handley G, Hanekom W, van Helden P, Kaplan G, Kaufmann SH, Kim P, Lienhardt C, Mizrahi V, Rubin E, Schnappinger D, Sherman D, Thole J, Vandal O, Walzl G, Warner D, Wilkinson R, Young D. Detection and treatment of subclinical tuberculosis. Tuberculosis (Edinb) 2012;92(6):447–452.
    1. Yang XY, Chen QF, Li YP, Wu SM. Mycobacterium vaccae as adjuvant therapy to anti-tuberculosis chemotherapy in never-treated tuberculosis patients: a meta-analysis. PLoS One. 2011;6(9):e23826.
    1. Talwar GP, Gupta JC, Mustafa AS, Kar HK, Katoch K, Parida SK, Reddi PP, Ahmed N, Saini V, Gupta S. Development of a potent invigorator of immune responses endowed with both preventive and therapeutic properties. Biologics. 2017;11:55–63.
    1. Tukvadze N, Cardona P, Vashakidze S, Shubladze N, Avaliani Z, Vilaplana C, Cardona PJ. Development of the food supplement Nyaditum resae as a new tool to reduce the risk of tuberculosis development. Int J Mycobacteriol. 2016;5(Suppl 1):S101–S102.
    1. Atmakuri K, Penn-Nicholson A, Tanner R, Dockrell HM. Proceedings of the meeting report: 5th global forum on TB vaccines, 20–23 February 2018; New Delhi, India; 2018. pp. 55–64. Tuberculosis (Edinb)

Source: PubMed

3
購読する