Bone turnover markers are associated with bone density, but not with fracture in end stage kidney disease: a cross-sectional study

Hanne Skou Jørgensen, Simon Winther, Morten Bøttcher, Ellen-Margrethe Hauge, Lars Rejnmark, My Svensson, Per Ivarsen, Hanne Skou Jørgensen, Simon Winther, Morten Bøttcher, Ellen-Margrethe Hauge, Lars Rejnmark, My Svensson, Per Ivarsen

Abstract

Background: Fracture risk is increased in chronic kidney disease (CKD), but assessment of bone fragility remains controversial in these patients. This study investigated the associations between bone turnover markers, bone mineral density (BMD), and prevalent fragility fracture in a cohort of kidney transplantation candidates.

Methods: Volumetric BMD of spine and hip was measured by quantitative computed tomography. Parathyroid hormone (PTH), bone-specific alkaline phosphatase, procollagen type-1 N-terminal propeptide, tartrate resistant alkaline phosphatase, and C- and N-terminal telopeptides of type 1 collagen were analyzed from fasting morning blood samples. Fragility fractures included prevalent vertebral fractures and previous low-trauma clinical fractures.

Results: The fracture prevalence was 18% in 157 adult kidney transplant candidates. Fractured patients had reduced BMD and Z-score at both spine and hip. Levels of bone turnover markers were significantly higher in patients on maintenance dialysis than in pre-dialysis patients; but did not differ between patients with and without fracture. There were strong, positive correlations between PTH and all bone turnover markers. PTH was negatively associated with Z-score at lumbar spine and total hip; in contrast, bone turnover markers were only negatively associated with total hip Z-score.

Conclusions: Bone turnover markers were negatively associated with bone density, but not associated with prevalent fracture in kidney transplantation candidates. The role of bone turnover markers in assessing bone fragility in CKD will require further investigation.

Trial registration: This study was registered at ClinicalTrials.gov with identifier NCT01344434 .

Keywords: Bone density; Bone remodeling; Chronic kidney disease; Fracture; Osteoporosis; Renal osteodystrophy.

Conflict of interest statement

Ethics approval and consent to participate

All patients provided written informed consent prior to study participation. The study was approved by the Central Denmark Region Committee on Health Research Ethics and The Danish Data Protection Agency and followed the principles of the declaration of Helsinki. It was registered at Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Levels of bone turnover markers in kidney transplantation candidates by dialysis status. Boxplots with median and interquartile range, whiskers at 5 and 95%, p = Student’s t test
Fig. 2
Fig. 2
Z-scores of spine and hip in kidney transplantation candidates with and without diabetes mellitus. Data are mean with standard errors, ANOVA p = one-way analysis of variance, p = student’s t test
Fig. 3
Fig. 3
Bone density and Z-scores in kidney transplantation candidates with and without fragility fracture. Mean values with standard errors, p = Student’s t test

References

    1. Tentori F, McCullough K, Kilpatrick RD, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85(1):166–73. doi: 10.1038/ki.2013.279.
    1. Arneson TJ, Li S, Liu J, Kilpatrick RD, Newsome BB, St Peter WL. Trends in hip fracture rates in US hemodialysis patients, 1993–2010. Am J Kidney Dis. 2013;62(4):747–54. doi: 10.1053/j.ajkd.2013.02.368.
    1. Nikkel LE, Hollenbeak CS, Fox EJ, Uemura T, Ghahramani N. Risk of fractures after renal transplantation in the United States. Transplantation. 2009;87(12):1846–51. doi: 10.1097/TP.0b013e3181a6bbda.
    1. Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int. 2005;16(6):581–9. doi: 10.1007/s00198-004-1780-5.
    1. Johnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94. doi: 10.1359/JBMR.050304.
    1. Group KDIGO (KDIGO) C-MW. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. 2009;(113):S1–130.
    1. Malluche HH, Mawad HW, Monier-Faugere M-C. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res. 2011;26(6):1368–76. doi: 10.1002/jbmr.309.
    1. Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis. 2016;67(4):559–66. doi: 10.1053/j.ajkd.2015.06.023.
    1. Johansson H, Odén A, Kanis JA, et al. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94(5):560–7. doi: 10.1007/s00223-014-9842-y.
    1. Vasikaran S, Cooper C, Eastell R, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49(8):1271–4. doi: 10.1515/CCLM.2011.602.
    1. Nickolas TL, Cremers S, Zhang A, et al. Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol. 2011;22(8):1560–72. doi: 10.1681/ASN.2010121275.
    1. Nickolas TL, Stein EM, Dworakowski E, et al. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res. 2013;28(8):1811–20. doi: 10.1002/jbmr.1916.
    1. Winther S, Svensson M, Jørgensen HS, et al. Diagnostic performance of coronary CT angiography and myocardial perfusion imaging in kidney transplantation candidates. JACC Cardiovasc Imaging. 2015;8(5):553–62. doi: 10.1016/j.jcmg.2014.12.028.
    1. QCT Pro Bone Mineral Densitometry Software - User’s guide. In: Report Content and Interpretation Module, Version 5.0. 2011. p. 11–19.
    1. Engelke K, Lang T, Khosla S, et al. Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions-part III. J Clin Densitom. 2015;18(3):393–407. doi: 10.1016/j.jocd.2015.06.010.
    1. Seeley AG, Browner WS, Nevitt MC, Genant HK. Which fractures are associated with low appendicular bone mass in elderly women. Ann Intern Med. 1991;115(11):837–42. doi: 10.7326/0003-4819-115-11-837.
    1. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. doi: 10.1002/jbmr.5650080915.
    1. Grados F, Fechtenbaum J, Flipon E, Kolta S, Roux C, Fardellone P. Radiographic methods for evaluating osteoporotic vertebral fractures. Joint Bone Spine. 2009;76(3):241–7. doi: 10.1016/j.jbspin.2008.07.017.
    1. Urena P, Bernard-Poenaru O, Ostertag A, et al. Bone mineral density, biochemical markers and skeletal fractures in haemodialysis patients. Nephrol Dial Transplant. 2003;18(11):2325–31. doi: 10.1093/ndt/gfg403.
    1. Maruyama Y, Taniguchi M, Kazama JJ, et al. A higher serum alkaline phosphatase is associated with the incidence of hip fracture and mortality among patients receiving hemodialysis in Japan. Nephrol Dial Transplant. 2014;29(8):1532–8. doi: 10.1093/ndt/gfu055.
    1. Iimori S, Mori Y, Akita W, et al. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients--a single-center cohort study. Nephrol Dial Transplant. 2012;27(1):345–51. doi: 10.1093/ndt/gfr317.
    1. Cejka D, Patsch JM, Weber M, et al. Bone microarchitecture in hemodialysis patients assessed by HR-pQCT. Clin J Am Soc Nephrol. 2011;6(9):2264–71. doi: 10.2215/CJN.09711010.
    1. Mares J, Ohlidalova K, Opatrna S, Ferda J. Determinants of prevalent vertebral fractures and progressive bone loss in long-term hemodialysis patients. J Bone Miner Metab. 2009;27(2):217–23. doi: 10.1007/s00774-008-0030-x.
    1. Nickolas TL, Stein E, Cohen A, et al. Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol. 2010;21(8):1371–80. doi: 10.1681/ASN.2009121208.
    1. Jamal SA, Cheung AM, West SL, Lok CE. Bone mineral density by DXA and HR pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney disease. Osteoporos Int. 2012.
    1. Jamal SA, West SL, Nickolas TL. The clinical utility of FRAX to discriminate fracture status in men and women with chronic kidney disease. Osteoporos Int. 2014;25(1):71–6. doi: 10.1007/s00198-013-2524-1.
    1. West SL, Lok CE, Langsetmo L, et al. Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res. 2015;30(5):913–9. doi: 10.1002/jbmr.2406.
    1. Ketteler M, Elder GJ, Evenepoel P, et al. Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a Kidney Disease: Improving Global Outcomes controversies conference. Kidney Int. 2015;87(3):502–28. doi: 10.1038/ki.2014.425.
    1. Tsuchida T, Ishimura E, Miki T, et al. The clinical significance of serum osteocalcin and N-terminal propeptide of type I collagen in predialysis patients with chronic renal failure. Osteoporos Int. 2005;16(2):172–9. doi: 10.1007/s00198-004-1655-9.
    1. Ueda M, Inaba M, Okuno S, et al. Clinical usefulness of the serum N-terminal propeptide of type I collagen as a marker of bone formation in hemodialysis patients. Am J Kidney Dis. 2002;40(4):802–9. doi: 10.1053/ajkd.2002.35692.
    1. Okuno S, Inaba M, Kitatani K, Ishimura E, Yamakawa T, Nishizawa Y. Serum levels of C-terminal telopeptide of type I collagen: a useful new marker of cortical bone loss in hemodialysis patients. Osteoporos Int. 2005;16(5):501–9. doi: 10.1007/s00198-004-1712-4.
    1. Ueda M, Inaba M, Okuno S, et al. Serum BAP as the clinically useful marker for predicting BMD reduction in diabetic hemodialysis patients with low PTH. Life Sci. 2005;77(10):1130–9. doi: 10.1016/j.lfs.2005.02.007.
    1. Malluche HH, Davenport DL, Cantor T, Monier-Faugere MC. Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin J Am Soc Nephrol. 2014;9(7):1254–62. doi: 10.2215/CJN.09470913.
    1. Rix M, Andreassen H, Eskildsen P, Langdahl B, Olgaard K. Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney Int. 1999;56(3):1084–93. doi: 10.1046/j.1523-1755.1999.00617.x.
    1. Nakashima A, Yorioka N, Doi S, Takasugi N, Shigemoto K, Kohno N. Osteoprotegerin and bone mineral density in hemodialysis patients. Osteoporos Int. 2006;17(6):841–6. doi: 10.1007/s00198-005-0047-0.
    1. Hruska KA, Seifert M. Pathophysiology of chronic kidney disease mineral bone disorder. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Eight. Wiley-Blackwell; 2013. p. 632–639.
    1. Moe SM, Chen NX, Seifert MF, et al. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009;75(2):176–84. doi: 10.1038/ki.2008.456.
    1. Malluche HH, Porter DS, Monier-Faugere M-C, Mawad H, Pienkowski D. Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol. 2012;23(3):525–32. doi: 10.1681/ASN.2010121253.
    1. Boling EP, Primavera C, Friedman G, et al. Non-invasive measurements of bone mass in adult renal osteodystrophy. Bone. 1993;14(3):409–13. doi: 10.1016/8756-3282(93)90172-7.
    1. Gerakis A, Hadjidakis D, Kokkinakis E, Apostolou T, Raptis S, Billis A. Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol. 2000;13(6):437–43.
    1. Fletcher S, Jones RG, Rayner HC, et al. Assessment of renal osteodystrophy in dialysis patients: use of bone alkaline phosphatase, bone mineral density and parathyroid ultrasound in comparison with bone histology. Nephron. 1997;75(4):412–9. doi: 10.1159/000189578.
    1. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97–122.
    1. Olgaard K, Salusky IBSJ. The spectrum of mineral and bone disease in chronic kidney disease. 2. Oxford: Oxford University Press; 2010.
    1. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int. 2007;18(4):427–44. doi: 10.1007/s00198-006-0253-4.
    1. Reid IR. Fat and bone. Arch Biochem Biophys. 2010;503(1):20–7. doi: 10.1016/j.abb.2010.06.027.
    1. Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG. Associations between vascular calcification, arterial stiffness and bone mineral density in chronic kidney disease. Nephrol Dial Transplant. 2008;23(2):586–93. doi: 10.1093/ndt/gfm660.
    1. Mann ML, Thornley-Brown D, Campbell R, et al. The effect of peritoneal dialysate on DXA bone densitometry results in patients with end-stage renal disease. J Clin Densitom. 2008;11(4):532–6. doi: 10.1016/j.jocd.2008.08.103.
    1. Furstenberg A, Buscombe J, Davenport A. Overestimation of lumbar spine calcium with dual energy X-ray absorptiometry scanning due to the prescription of lanthanum carbonate in patients with chronic kidney disease. Am J Nephrol. 2010;32(5):425–31. doi: 10.1159/000320481.

Source: PubMed

3
購読する