Delineation of lung cancer with FDG PET/CT during radiation therapy

J Ganem, S Thureau, I Gardin, R Modzelewski, S Hapdey, P Vera, J Ganem, S Thureau, I Gardin, R Modzelewski, S Hapdey, P Vera

Abstract

Objectives: To propose an easily applicable segmentation method (perPET-RT) for delineation of tumour volume during radiotherapy on interim fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with non-small cell lung cancer (NSCLC).

Material and methods: Sixty-seven patients (51 primary tumours, 60 lymph nodes), from 4 prospective studies, underwent an FDG PET/CT scan during the fifth week of radiation therapy, using different generations of PET/CT. Per-therapeutic PET/CT scans were delineated in consensus by two experienced physicians leading to the gold standard threshold to be applied. The mathematical expression of Thopt, the optimal threshold to be applied as a function of the maximum standard uptake value (SUVmax), was determined. The performance of this method (perPET-RT) was assessed by computing the DICE similarity coefficient (DSC) and was compared with 8 fixed threshold values and 3 adaptive thresholding methods.

Results: Thopt verified the following expression: Thopt = A.ln(1/SUVmax) + B where A and B were 2 constants. A and B were independent from the generation of PET/CT, but depended on the type of lesions (primary lung tumours vs. lymph nodes). PerPET-RT showed good to very good agreement in comparison to the gold standard. The mean and standard deviation of DSC value was 0.81 ± 0.13 for lung lesions and 0.78 ± 0.15 for lymph nodes. PerPET-RT showed a significant better agreement than the other segmentation methods (p < 0.001), except for one of the adaptive thresholding method ADT (p = 0.11).

Conclusion: On the database used, perPET-RT has proven its reliability and accuracy for tumour delineation on per-therapeutic FDG PET/CT using only SUVmax measurement. This method may be used to delineate tumour volume for dose-escalation planning.

Trial registration: NCT01261598 , NCT01261585 , NCT01576796 .

Keywords: Delineation; Lung cancer; PET/CT; Radiation therapy; perPET-RT.

Conflict of interest statement

Ethics approval and consent to participate

All data were extracted from 4 prospective studies (NCT01261598, NCT01261585) (NCT01576796). For all patients, we are a consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Patient with stage IIIA left lung adenocarcinoma. FDG PET/CT performed before (a.) and during (b) radiation therapy. Pre therapeutic scan (a) show left para-hilar hypermetabolism with SUVmax = 9.6 and MTV = 15.4 cc defined with a threshold value of 41% SUVmax. Per-therapeutic data (b) reveals a decrease in FDG uptake (SUVmax = 4.2) and MTV = 4.8 cc. defined by the experts with a threshold value of 55% of SUVmax
Fig. 2
Fig. 2
Each lesion is represented as a diamond for lung lesions and a square for involved lymph nodes. Thopt, the optimal threshold to be applied for delineation is expressed as a linear regression such as Thopt = A.[ln (1/SUVmax)] + B of the maximum standard uptake value (SUVmax). The expression of Thopt for lung lesions and lymph nodes are presented with their respective coefficient of determination R2
Fig. 3
Fig. 3
Descriptive statistics of DSC for each segmentation methods represented as Box-and-whisker plots for perPET-RT, AOV and fixed thresholding methods for the 111 lesions (a) and for perPET-RT, ADT and COA for the 70 lesions observed on the Biograph Hi-Rez (b)

References

    1. PDQ Adult Treatment Editorial Board . PDQ Cancer information summaries. Bethesda: National Cancer Institute (US); 2002. Non-small cell lung Cancer treatment (PDQ®): health professional version.
    1. Albain KS, Swann RS, Rusch VW, Turrisi AT, Shepherd FA, Smith C, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet Lond Engl. 2009;374(9687):379–386. doi: 10.1016/S0140-6736(09)60737-6.
    1. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet Lond Engl. 2011;378(9804):1727–1740. doi: 10.1016/S0140-6736(10)62101-0.
    1. Jarritt P H, Carson K J, Hounsell A R, Visvikis D. The role of PET/CT scanning in radiotherapy planning. The British Journal of Radiology. 2006;79(special_issue_1):S27–S35. doi: 10.1259/bjr/35628509.
    1. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–354. doi: 10.1007/s00259-014-2961-x.
    1. van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys. 2007;68(3):771–778. doi: 10.1016/j.ijrobp.2006.12.067.
    1. Schreurs LMA, Busz DM, Paardekooper GMRM, Beukema JC, Jager PL, Van der Jagt EJ, et al. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition. Dis Esophagus Off J Int Soc Dis Esophagus ISDE. 2010;23(6):493–501. doi: 10.1111/j.1442-2050.2009.01044.x.
    1. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16(2):187–199. doi: 10.1016/S1470-2045(14)71207-0.
    1. Aerts HJWL, van Baardwijk AAW, Petit SF, Offermann C, van LJ, Houben R, et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18) Fluorodeoxyglucose-PET-CT scan. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2009;91(3):386–392. doi: 10.1016/j.radonc.2009.03.006.
    1. Calais J, Thureau S, Dubray B, Modzelewski R, Thiberville L, Gardin I, et al. Areas of high 18F-FDG uptake on preradiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for non-small cell lung cancer. J Nucl Med Off Publ Soc Nucl Med. 2015;56(2):196–203.
    1. Edet-Sanson A, Dubray B, Doyeux K, Back A, Hapdey S, Modzelewski R, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC) Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;102(2):251–257. doi: 10.1016/j.radonc.2011.07.023.
    1. Vera P, Mezzani-Saillard S, Edet-Sanson A, Ménard J-F, Modzelewski R, Thureau S, et al. FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients: a prospective multicentre study (RTEP2) Eur J Nucl Med Mol Imaging. 2014;41(6):1057–1065. doi: 10.1007/s00259-014-2687-9.
    1. Kong FM, Ten Haken RK, Schipper M, Frey KA, Hayman J, Gross M, et al. Effect of Midtreatment PET/CT-adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung Cancer: a phase 2 clinical trial. JAMA Oncol. 2017;3(10):1358–1365. doi: 10.1001/jamaoncol.2017.0982.
    1. Hatt M, Visvikis D. Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography: still a Pandora’s box?: in regard to Devic et al. (Int J Radiat Oncol Biol Phys 2010). Int J Radiat Oncol Biol Phys. 2010;78(5):1605.
    1. Paulino AC, Johnstone PAS. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys. 2004;59(1):4–5. doi: 10.1016/j.ijrobp.2003.10.045.
    1. Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rübe C, et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34(4):453–462. doi: 10.1007/s00259-006-0252-x.
    1. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80(12 Suppl):2505–2509. doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>;2-F.
    1. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl med off Publ Soc. Nucl Med. 2004;45(9):1519–1527.
    1. Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32(3):294–301. doi: 10.1007/s00259-004-1566-1.
    1. Doyeux K, Vauclin S, Hapdey S, Daouk J, Edet-Sanson A, Vera P, et al. Reproducibility of the adaptive thresholding calibration procedure for the delineation of 18F-FDG-PET-positive lesions. Nucl Med Commun may. 2013;34(5):432–438. doi: 10.1097/MNM.0b013e32835fe1f4.
    1. Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–1999. doi: 10.1007/s00259-008-0875-1.
    1. Thureau S, Chaumet-Riffaud P, Modzelewski R, Fernandez P, Tessonnier L, Vervueren L, et al. Interobserver agreement of qualitative analysis and tumor delineation of 18F-fluoromisonidazole and 3′-deoxy-3’-18F-fluorothymidine PET images in lung cancer. J Nucl Med Off Publ Soc Nucl Med. 2013;54(9):1543–1550.
    1. Schaefer A, Vermandel M, Baillet C, Dewalle-Vignion AS, Modzelewski R, Vera P, et al. Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation. Eur J Nucl Med Mol Imaging. 2016;43(5):911–924. doi: 10.1007/s00259-015-3239-7.
    1. Vauclin S, Doyeux K, Hapdey S, Edet-Sanson A, Vera P, Gardin I. Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys med biol. 2009;54(22):6901. doi: 10.1088/0031-9155/54/22/010.
    1. Geets X, Lee JA, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34(9):1427–1438. doi: 10.1007/s00259-006-0363-4.
    1. Onoma DP, Ruan S, Thureau S, Nkhali L, Modzelewski R, Monnehan GA, et al. Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm. Comput Med Imaging Graph Off J Comput Med Imaging Soc dec. 2014;38(8):753–763. doi: 10.1016/j.compmedimag.2014.09.007.
    1. Belhassen S, Zaidi H. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys mar. 2010;37(3):1309–1324. doi: 10.1118/1.3301610.
    1. Dewalle-Vignion A-S, Betrouni N, Lopes R, Huglo D, Stute S, Vermandel M. A new method for volume segmentation of PET images, based on possibility theory. IEEE Trans Med Imaging. 2011;30(2):409–423. doi: 10.1109/TMI.2010.2083681.
    1. Hatt M., Cheze le Rest C., Turzo A., Roux C., Visvikis D. A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET. IEEE Transactions on Medical Imaging. 2009;28(6):881–893. doi: 10.1109/TMI.2008.2012036.
    1. Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging. 2010;37(11):2165–2187. doi: 10.1007/s00259-010-1423-3.
    1. Vera P, Bohn P, Edet-Sanson A, Salles A, Hapdey S, Gardin I, et al. Simultaneous positron emission tomography (PET) assessment of metabolism with 18F-fluoro-2-deoxy-d-glucose (FDG), proliferation with 18F-fluoro-thymidine (FLT), and hypoxia with 18fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol jan. 2011;98(1):109–116. doi: 10.1016/j.radonc.2010.10.011.
    1. Radiotherapy Dose Complement in the Treatment of Hypoxic Lesions Patients With Stage III Non-small-cell Lung Cancer - .
    1. Zar J. Biostatiscal analysis. 2. La Jolla: Prentice-Hall; 1984.
    1. Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(13):2181–2190. doi: 10.1200/JCO.2009.26.2543.
    1. Curran WJ, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103(19):1452–1460. doi: 10.1093/jnci/djr325.
    1. van Elmpt W, De Ruysscher D, van der Salm A, Lakeman A, van der Stoep J, Emans D, et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;104(1):67–71. doi: 10.1016/j.radonc.2012.03.005.
    1. Kelsey CR, Christensen JD, Chino JP, Adamson J, Ready NE, Perez BA. Adaptive planning using positron emission tomography for locally advanced lung cancer: a feasibility study. Pract Radiat Oncol. 2016;6(2):96–104. doi: 10.1016/j.prro.2015.10.009.
    1. Study of Positron Emission Tomography and Computed Tomography in Guiding Radiation Therapy in Patients With Stage III Non-small Cell Lung Cancer - =rtog+1106&rank=1.
    1. Palie O, Michel P, Ménard J-F, Rousseau C, Rio E, Bridji B, et al. The predictive value of treatment response using FDG PET performed on day 21 of chemoradiotherapy in patients with oesophageal squamous cell carcinoma. A prospective, multicentre study (RTEP3) Eur J Nucl Med Mol Imaging. 2013;40(9):1345–1355. doi: 10.1007/s00259-013-2450-7.
    1. Study of Interest of Personalized Radiotherapy Dose Redistribution in Patients With Stage III NSCLC

Source: PubMed

3
購読する