Cancer Cell Glycocalyx and Its Significance in Cancer Progression

Hongyan Kang, Qiuhong Wu, Anqiang Sun, Xiao Liu, Yubo Fan, Xiaoyan Deng, Hongyan Kang, Qiuhong Wu, Anqiang Sun, Xiao Liu, Yubo Fan, Xiaoyan Deng

Abstract

Cancer is a malignant tumor that threatens the health of human beings, and has become the leading cause of death in urban and rural residents in China. The glycocalyx is a layer of multifunctional glycans that covers the surfaces of a variety of cells, including vascular endothelial cells, smooth muscle cells, stem cells, epithelial, osteocytes, as well as cancer cells. The glycosylation and syndecan of cancer cell glycocalyx are unique. However, heparan sulfate (HS), hyaluronic acid (HA), and syndecan are all closely associated with the processes of cancer progression, including cell migration and metastasis, tumor cell adhesion, tumorigenesis, and tumor growth. The possible underlying mechanisms may be the interruption of its barrier function, its radical role in growth factor storage, signaling, and mechanotransduction. In the later sections, we discuss glycocalyx targeting therapeutic approaches reported in animal and clinical experiments. The study concludes that cancer cells' glycocalyx and its role in cancer progression are beginning to be known by more groups, and future studies should pay more attention to its mechanotransduction of interstitial flow-induced shear stress, seeking promising therapeutic targets with less toxicity but more specificity.

Keywords: cancer; glycocalyx; mechanotransduction.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) Cancer cells are exposed to interstitial flow and glycocalyx can sense interstitial flow induced shear stress. (b) Glycocalyx is composed of proteoglycans and glycoproteins, like HS, HA, CS and KS. Syndecans and glypicans are the major core proteins.
Figure 2
Figure 2
The involvement of cancer cell glycocalyx in tumor progression. (a) Glycocalyx enhances growth factor storage and signaling to regulate cancer cell adhesion, angiogenesis, metastasis, growth and survival. (b) Glycocalyx acts as a mechanotransducer of interstitial flow-induced shear stress to regulate cancer cell motility and metastasis.

References

    1. Shurer C.R., Colville M.J., Gupta V.K., Head S.E., Kai F., Lakins J.N., Paszek M.J. Genetically encoded toolbox for glycocalyx engineering: Tunable control of cell adhesion, survival, and cancer cell behaviors. Acs. Biomater. Sci. Eng. 2018;4:388–399. doi: 10.1021/acsbiomaterials.7b00037.
    1. Gasimli L., Linhardt R.J., Dordick J.S. Proteoglycans in stem cells. Biotechnol. Appl. Bioc. 2012;59:65–76. doi: 10.1002/bab.1002.
    1. Tarbell J.M., Cancel L.M. The glycocalyx and its significance in human medicine. J. Intern. Med. 2016;280:97–113. doi: 10.1111/joim.12465.
    1. Ly M., Laremore T.N., Linhardt R.J. Proteoglycomics: Recent progress and future challenges. Omics. 2010;14:389–399. doi: 10.1089/omi.2009.0123.
    1. Fu B.M.M., Tarbell J.M. Mechano-sensing and transduction by endothelial surface glycocalyx: Composition, structure, and function. Wires. Syst. Biol. Med. 2013;5:381–390. doi: 10.1002/wsbm.1211.
    1. Kim Y.J., Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 1997;14:569–576. doi: 10.1023/A:1018580324971.
    1. Dall’Olio F., Chiricolo M. Sialyltransferases in cancer. Glycoconj. J. 2001;18:841–850. doi: 10.1023/A:1022288022969.
    1. Nakamori S., Kameyama M., Imaoka S., Furukawa H., Ishikawa O., Sasaki Y., Kabuto T., Iwanaga T., Matsushita Y., Irimura T. Increased expression of sialyl lewisx antigen correlates with poor survival in patients with colorectal carcinoma: Clinicopathological and immunohistochemical study. Cancer Res. 1993;53:3632–3637.
    1. Iozzo R.V. Basement membrane proteoglycans: From cellar to ceiling. Nat. Rev. Mol. Cell Biol. 2005;6:646–656. doi: 10.1038/nrm1702.
    1. Bezakova G., Ruegg M.A. New insights into the roles of agrin. Nat. Rev. Mol. Cell Biol. 2003;4:295–308. doi: 10.1038/nrm1074.
    1. Adamia S., Maxwell C.A., Pilarski L.M. Hyaluronan and hyaluronan synthases: Potential therapeutic targets in cancer. Curr. Drug Targets Cardiovasc. Haematol. Disord. 2005;5:3–14. doi: 10.2174/1568006053005056.
    1. Pinho S.S., Reis C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer. 2015;15:540–555. doi: 10.1038/nrc3982.
    1. Locker G.Y., Hamilton S., Harris J., Jessup J.M., Kemeny N., Macdonald J.S., Somerfield M.R., Hayes D.F., Bast R.C., Jr. Asco 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 2006;24:5313–5327. doi: 10.1200/JCO.2006.08.2644.
    1. Tanaka F., Otake Y., Nakagawa T., Kawano Y., Miyahara R., Li M., Yanagihara K., Inui K., Oyanagi H., Yamada T., et al. Prognostic significance of polysialic acid expression in resected non-small cell lung cancer. Cancer Res. 2001;61:1666–1670.
    1. Carvalho A.S., Harduin-Lepers A., Magalhaes A., Machado E., Mendes N., Costa L.T., Matthiesen R., Almeida R., Costa J., Reis C.A. Differential expression of alpha-2,3-sialyltransferases and alpha-1,3/4-fucosyltransferases regulates the levels of sialyl lewis a and sialyl lewis x in gastrointestinal carcinoma cells. Int. J. Biochem. Cell Biol. 2010;42:80–89. doi: 10.1016/j.biocel.2009.09.010.
    1. Liu Y.C., Yen H.Y., Chen C.Y., Chen C.H., Cheng P.F., Juan Y.H., Khoo K.H., Yu C.J., Yang P.C., Hsu T.L., et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc. Natl. Acad. Sci. USA. 2011;108:11332–11337. doi: 10.1073/pnas.1107385108.
    1. Potapenko I.O., Haakensen V.D., Luders T., Helland A., Bukholm I., Sorlie T., Kristensen V.N., Lingjaerde O.C., Borresen-Dale A.L. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol. Oncol. 2010;4:98–118. doi: 10.1016/j.molonc.2009.12.001.
    1. Hutchinson W.L., Du M.Q., Johnson P.J., Williams R. Fucosyltransferases: Differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis. Hepatology. 1991;13:683–688. doi: 10.1002/hep.1840130412.
    1. Kudelka M.R., Ju T., Heimburg-Molinaro J., Cummings R.D. Simple sugars to complex disease-mucin-type o-glycans in cancer. Adv. Cancer Res. 2015;126:53–135.
    1. Julien S., Picco G., Sewell R., Vercoutter-Edouart A.S., Tarp M., Miles D., Clausen H., Taylor-Papadimitriou J., Burchell J.M. Sialyl-tn vaccine induces antibody-mediated tumour protection in a relevant murine model. Br. J. Cancer. 2009;100:1746–1754. doi: 10.1038/sj.bjc.6605083.
    1. Bennett E.P., Mandel U., Clausen H., Gerken T.A., Fritz T.A., Tabak L.A. Control of mucin-type o-glycosylation: A classification of the polypeptide galnac-transferase gene family. Glycobiology. 2012;22:736–756. doi: 10.1093/glycob/cwr182.
    1. Dennis J.W., Laferte S., Waghorne C., Breitman M.L., Kerbel R.S. Beta 1-6 branching of asn-linked oligosaccharides is directly associated with metastasis. Science. 1987;236:582–585. doi: 10.1126/science.2953071.
    1. Demetriou M., Nabi I.R., Coppolino M., Dedhar S., Dennis J.W. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing glcnac-transferase V. J. Cell Biol. 1995;130:383–392. doi: 10.1083/jcb.130.2.383.
    1. Yoshimura M., Nishikawa A., Ihara Y., Taniguchi S., Taniguchi N. Suppression of lung metastasis of b16 mouse melanoma by n-acetylglucosaminyltransferase iii gene transfection. Proc. Natl. Acad. Sci. USA. 1995;92:8754–8758. doi: 10.1073/pnas.92.19.8754.
    1. Badiola I., Olaso E., Crende O., Friedman S.L., Vidal-Vanaclocha F. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut. 2012;61:1465–1472. doi: 10.1136/gutjnl-2011-300810.
    1. Conklin M.W., Eickhoff J.C., Riching K.M., Pehlke C.A., Eliceiri K.W., Provenzano P.P., Friedl A., Keely P.J. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 2011;178:1221–1232. doi: 10.1016/j.ajpath.2010.11.076.
    1. Hu Y.P., Sun H.G., Owens R.T., Gu Z.N., Wu J.S., Chen Y.Q., O’Flaherty J.T., Edwards I.J. Syndecan-1-dependent suppression of pdk1/akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer. Neoplasia. 2010;12:826–836. doi: 10.1593/neo.10586.
    1. Francescone R.A., Scully S., Faibish M., Taylor S.L., Oh D., Moral L., Yan W., Bentley B., Shao R. Role of ykl-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J. Biochem. Physiol. 2011;286:15332–15343. doi: 10.1074/jbc.M110.212514.
    1. Modrowski D., Orosco A., Thevenard J., Fromigue O., Marie P.J. Syndecan-2 overexpression induces osteosarcoma cell apoptosis: Implication of syndecan-2 cytoplasmic domain and jnk signaling. Bone. 2005;37:180–189. doi: 10.1016/j.bone.2005.04.010.
    1. Lee J.H., Park H., Chung H., Choi S., Kim Y., Yoo H., Kim T.Y., Hann H.J., Seong I., Kim J., et al. Syndecan-2 regulates the migratory potential of melanoma cells. J. Biochem. Physiol. 2009;284:27167–27175. doi: 10.1074/jbc.M109.034678.
    1. Baljinnyam E., Iwatsubo K., Kurotani R., Wang X., Ulucan C., Iwatsubo M., Lagunoff D., Ishikawa Y. Epac increases melanoma cell migration by a heparan sulfate-related mechanism. Am. J. Physiol. Cell Physiol. 2009;297:C802–813. doi: 10.1152/ajpcell.00129.2009.
    1. Dieudonne F.X., Marion A., Hay E., Marie P.J., Modrowski D. High wnt signaling represses the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. Cancer Res. 2010;70:5399–5408. doi: 10.1158/0008-5472.CAN-10-0090.
    1. Chalkiadaki G., Nikitovic D., Berdiaki A., Sifaki M., Krasagakis K., Katonis P., Karamanos N.K., Tzanakakis G.N. Fibroblast growth factor-2 modulates melanoma adhesion and migration through a syndecan-4-dependent mechanism. Int. J. Biochem. Cell Biol. 2009;41:1323–1331. doi: 10.1016/j.biocel.2008.11.008.
    1. Toole B.P. Hyaluronan: From extracellular glue to pericellular cue. Nat. Rev. Cancer. 2004;4:528–539. doi: 10.1038/nrc1391.
    1. Anttila M.A., Tammi R.H., Tammi M.I., Syrjanen K.J., Saarikoski S.V., Kosma V.M. High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 2000;60:150–155.
    1. Udabage L., Brownlee G.R., Nilsson S.K., Brown T.J. The over-expression of has2, hyal-2 and cd44 is implicated in the invasiveness of breast cancer. Exp. Cell Res. 2005;310:205–217. doi: 10.1016/j.yexcr.2005.07.026.
    1. Weigel P.H., Hascall V.C., Tammi M. Hyaluronan synthases. J. Biochem. Physiol. 1997;272:13997–14000. doi: 10.1074/jbc.272.22.13997.
    1. Rudrabhatla S.R., Mahaffey C.L., Mummert M.E. Tumor microenvironment modulates hyaluronan expression: The lactate effect. J. Clin. Investig. Dermatol. 2006;126:1378–1387. doi: 10.1038/sj.jid.5700255.
    1. Zhang L., Underhill C.B., Chen L. Hyaluronan on the surface of tumor cells is correlated with metastatic behavior. Cancer Res. 1995;55:428–433.
    1. Fieber C., Baumann P., Vallon R., Termeer C., Simon J.C., Hofmann M., Angel P., Herrlich P., Sleeman J.P. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J. Cell Sci. 2004;117:359–367. doi: 10.1242/jcs.00831.
    1. Toole B.P., Wight T.N., Tammi M.I. Hyaluronan-cell interactions in cancer and vascular disease. J. Biochem. Physiol. 2002;277:4593–4596. doi: 10.1074/jbc.R100039200.
    1. Naor D., Wallach-Dayan S.B., Zahalka M.A., Sionov R.V. Involvement of cd44, a molecule with a thousand faces, in cancer dissemination. Semin. Cancer Biol. 2008;18:260–267. doi: 10.1016/j.semcancer.2008.03.015.
    1. Hill A., McFarlane S., Mulligan K., Gillespie H., Draffin J.E., Trimble A., Ouhtit A., Johnston P.G., Harkin D.P., McCormick D., et al. Cortactin underpins cd44-promoted invasion and adhesion of breast cancer cells to bone marrowendothelial cells. Oncogene. 2006;25:6079–6091. doi: 10.1038/sj.onc.1209628.
    1. Lopez J.I., Camenisch T.D., Stevens M.V., Sands B.J., McDonald J., Schroeder J.A. Cd44 attenuates metastatic invasion during breast cancer progression. Cancer Res. 2005;65:6755–6763. doi: 10.1158/0008-5472.CAN-05-0863.
    1. Bishop J.R., Schuksz M., Esko J.D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446:1030–1037. doi: 10.1038/nature05817.
    1. Bernfield M., Gotte M., Park P.W., Reizes O., Fitzgerald M.L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729.
    1. Li J., Mo M.L., Chen Z., Yang J., Li Q.S., Wang D.J., Zhang H., Ye Y.J., Li H.L., Zhang F., et al. Hsulf-1 inhibits cell proliferation and invasion in human gastric cancer. Cancer Sci. 2011;102:1815–1821. doi: 10.1111/j.1349-7006.2011.02024.x.
    1. Peterson S.M., Iskenderian A., Cook L., Romashko A., Tobin K., Jones M., Norton A., Gomez-Yafal A., Heartlein M.W., Concino M.F., et al. Human sulfatase 2 inhibits in vivo tumor growth of mda-mb-231 human breast cancer xenografts. BMC Cancer. 2010;10:427. doi: 10.1186/1471-2407-10-427.
    1. Vreys V., David G. Mammalian heparanase: What is the message? J. Cell Mol. Med. 2007;11:427–452. doi: 10.1111/j.1582-4934.2007.00039.x.
    1. Sanderson R.D., Yang Y., Suva L.J., Kelly T. Heparan sulfate proteoglycans and heparanase—Partners in osteolytic tumor growth and metastasis. Matrix Biol. 2004;23:341–352. doi: 10.1016/j.matbio.2004.08.004.
    1. Mali M., Andtfolk H., Miettinen H.M., Jalkanen M. Suppression of tumor cell growth by syndecan-1 ectodomain. J. Biochem. Physiol. 1994;269:27795–27798.
    1. Takaoka M., Naomoto Y., Ohkawa T., Uetsuka H., Shirakawa Y., Uno F., Fujiwara T., Gunduz M., Nagatsuka H., Nakajima M., et al. Heparanase expression correlates with invasion and poor prognosis in gastric cancers. Lab. Investig. 2003;83:613–622. doi: 10.1097/.
    1. Gohji K., Hirano H., Okamoto M., Kitazawa S., Toyoshima M., Dong J., Katsuoka Y., Nakajima M. Expression of three extracellular matrix degradative enzymes in bladder cancer. Int. J. Cancer. 2001;95:295–301.
    1. Hammond E., Khurana A., Shridhar V., Dredge K. The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Front. Oncol. 2014;4:195. doi: 10.3389/fonc.2014.00195.
    1. Koliopanos A., Friess H., Kleeff J., Shi X., Liao Q., Pecker I., Vlodavsky I., Zimmermann A., Buchler M.W. Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res. 2001;61:4655–4659.
    1. El-Assal O.N., Yamanoi A., Ono T., Kohno H., Nagasue N. The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin. Cancer Res. 2001;7:1299–1305.
    1. Shinyo Y., Kodama J., Hongo A., Yoshinouchi M., Hiramatsu Y. Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann. Oncol. 2003;14:1505–1510. doi: 10.1093/annonc/mdg407.
    1. Hasengaowa, Kodama J., Kusumoto T., Seki N., Matsuo T., Ojima Y., Nakamura K., Hongo A., Hiramatsu Y. Heparanase expression in both normal endometrium and endometrial cancer. Int. J. Gynecol. Cancer. 2006;16:1401–1406.
    1. Yang Y., MacLeod V., Bendre M., Huang Y., Theus A.M., Miao H.Q., Kussie P., Yaccoby S., Epstein J., Suva L.J., et al. Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood. 2005;105:1303–1309. doi: 10.1182/blood-2004-06-2141.
    1. Chakraborty S., Lakshmanan M., Swa H.L.F., Chen J.X., Zhang X.Q., Ong Y.S., Loo L.S., Akincilar S.C., Gunaratne J., Tergaonkar V., et al. An oncogenic role of agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat. Commun. 2015;6:6184. doi: 10.1038/ncomms7184.
    1. Kawahara R., Granato D.C., Carnielli C.M., Cervigne N.K., Oliveria C.E., Rivera C., Yokoo S., Fonseca F.P., Lopes M., Santos-Silva A.R., et al. Agrin and perlecan mediate tumorigenic processes in oral squamous cell carcinoma. PloS ONE. 2014;9:e115004. doi: 10.1371/journal.pone.0115004.
    1. Afratis N., Gialeli C., Nikitovic D., Tsegenidis T., Karousou E., Theocharis A.D., Pavao M.S., Tzanakakis G.N., Karamanos N.K. Glycosaminoglycans: Key players in cancer cell biology and treatment. Febs. J. 2012;279:1177–1197. doi: 10.1111/j.1742-4658.2012.08529.x.
    1. Lebakken C.S., Rapraeger A.C. Syndecan-1 mediates cell spreading in transfected human lymphoblastoid (raji) cells. J. Cell Biol. 1996;132:1209–1221. doi: 10.1083/jcb.132.6.1209.
    1. Mikami S., Ohashi K., Usui Y., Nemoto T., Katsube K., Yanagishita M., Nakajima M., Nakamura K., Koike M. Loss of syndecan-1 and increased expression of heparanase in invasive esophageal carcinomas. Jpn. J. Cancer Res. 2001;92:1062–1073. doi: 10.1111/j.1349-7006.2001.tb01061.x.
    1. Matsumoto A., Ono M., Fujimoto Y., Gallo R.L., Bernfield M., Kohgo Y. Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int. J. Cancer. 1997;74:482–491. doi: 10.1002/(SICI)1097-0215(19971021)74:5<482::AID-IJC2>;2-#.
    1. Shea D.J., Li Y.W., Stebe K.J., Konstantopoulos K. E-selectin-mediated rolling facilitates pancreatic cancer cell adhesion to hyaluronic acid. FASEB J. 2017;31:5078–5086. doi: 10.1096/fj.201700331R.
    1. Ween M.P., Hummitzsch K., Rodgers R.J., Oehler M.K., Ricciardelli C. Versican induces a pro-metastatic ovarian cancer cell behavior which can be inhibited by small hyaluronan oligosaccharides. Clin. Exp. Metastas. 2011;28:113–125. doi: 10.1007/s10585-010-9363-7.
    1. Takabe P., Bart G., Ropponen A., Rilla K., Tammi M., Tammi R., Pasonen-Seppanen S. Hyaluronan synthase 3 (has3) overexpression downregulates mv3 melanoma cell proliferation, migration and adhesion. Exp. Cell Res. 2015;337:1–15. doi: 10.1016/j.yexcr.2015.07.026.
    1. Takemoto N., Suehara T., Frisco H.L., Sato S., Sezaki T., Kusamori K., Kawazoe Y., Park S.M., Yamazoe S., Mizuhata Y., et al. Small-molecule-induced clustering of heparan sulfate promotes cell adhesion. J. Am. Chem Soc. 2013;135:11032–11039. doi: 10.1021/ja4018682.
    1. Goldshmidt O., Zcharia E., Cohen M., Aingorn H., Cohen I., Nadav L., Katz B.Z., Geiger B., Vlodavsky I. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003;17:1015–1025. doi: 10.1096/fj.02-0773com.
    1. Levy-Adam F., Feld S., Suss-Toby E., Vlodavsky I., Ilan N. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE. 2008;3 doi: 10.1371/journal.pone.0002319.
    1. Carey D.J. Syndecans: Multifunctional cell-surface co-receptors. Biochem. J. 1997;327:1–16. doi: 10.1042/bj3270001.
    1. Beauvais D.M., Rapraeger A.C. Syndecans in tumor cell adhesion and signaling. Reprod. Biol. Endocrinol. 2004;2:3. doi: 10.1186/1477-7827-2-3.
    1. Derksen P.W., Keehnen R.M., Evers L.M., van Oers M.H., Spaargaren M., Pals S.T. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes met signaling in multiple myeloma. Blood. 2002;99:1405–1410. doi: 10.1182/blood.V99.4.1405.
    1. Lamorte S., Ferrero S., Aschero S., Monitillo L., Bussolati B., Omede P., Ladetto M., Camussi G. Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells. Leukemia. 2012;26:1081–1090. doi: 10.1038/leu.2011.290.
    1. Park H., Kim Y., Lim Y., Han I., Oh E.S. Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J. Biochem. Physiol. 2002;277:29730–29736. doi: 10.1074/jbc.M202435200.
    1. Beauvais D.M., Rapraeger A.C. Syndecan-1-mediated cell spreading requires signaling by alphavbeta3 integrins in human breast carcinoma cells. Exp. Cell Res. 2003;286:219–232. doi: 10.1016/S0014-4827(03)00126-5.
    1. Lim H.C., Multhaupt H.A., Couchman J.R. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol. Cancer. 2015;14:15. doi: 10.1186/s12943-014-0279-8.
    1. Zhang L., Zeng M., Fu B.M. Sphingosine-1-phosphate reduces adhesion of malignant mammary tumor cells mda-mb-231 to microvessel walls by protecting endothelial surface glycocalyx. Cell Mol. Biol. 2017;63:16–22. doi: 10.14715/cmb/2017.63.4.3.
    1. Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257. doi: 10.1038/35025220.
    1. Kerbel R., Folkman J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer. 2002;2:727–739. doi: 10.1038/nrc905.
    1. Chen G., Nakamura I., Dhanasekaran R., Iguchi E., Tolosa E.J., Romecin P.A., Vera R.E., Almada L.L., Miamen A.G., Chaiteerakij R., et al. Transcriptional induction of periostin by a sulfatase 2-tgfbeta1-smad signaling axis mediates tumor angiogenesis in hepatocellular carcinoma. Cancer Res. 2017;77:632–645. doi: 10.1158/0008-5472.CAN-15-2556.
    1. Fuster M.M., Wang L., Castagnola J., Sikora L., Reddi K., Lee P.H., Radek K.A., Schuksz M., Bishop J.R., Gallo R.L., et al. Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J. Cell Biol. 2007;177:539–549. doi: 10.1083/jcb.200610086.
    1. Narita K., Staub J., Chien J., Meyer K., Bauer M., Friedl A., Ramakrishnan S., Shridhar V. Hsulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res. 2006;66:6025–6032. doi: 10.1158/0008-5472.CAN-05-3582.
    1. Morimoto-Tomita M., Uchimura K., Bistrup A., Lum D.H., Egeblad M., Boudreau N., Werb Z., Rosen S.D. Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia. 2005;7:1001–1010. doi: 10.1593/neo.05496.
    1. Zhu C.F., He L., Zhou X., Nie X., Gu Y. Sulfatase 2 promotes breast cancer progression through regulating some tumor-related factors. Oncol. Rep. 2016;35:1318–1328. doi: 10.3892/or.2015.4525.
    1. Lai J.P., Sandhu D.S., Yu C.R., Han T., Moser C.D., Jackson K.K., Guerrero R.B., Aderca I., Isomoto H., Garrity-Park M.M., et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology. 2008;47:1211–1222. doi: 10.1002/hep.22202.
    1. Nawroth R., van Zante A., Cervantes S., McManus M., Hebrok M., Rosen S.D. Extracellular sulfatases, elements of the wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS ONE. 2007;2:e392. doi: 10.1371/journal.pone.0000392.
    1. Lemjabbar-Alaoui H., van Zante A., Singer M.S., Xue Q., Wang Y.Q., Tsay D., He B., Jablons D.M., Rosen S.D. Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis. Oncogene. 2010;29:635–646. doi: 10.1038/onc.2009.365.
    1. Cohen I., Pappo O., Elkin M., San T., Bar-Shavit R., Hazan R., Peretz T., Vlodavsky I., Abramovitch R. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int. J. Cancer. 2006;118:1609–1617. doi: 10.1002/ijc.21552.
    1. Barash U., Zohar Y., Wildbaum G., Beider K., Nagler A., Karin N., Ilan N., Vlodavsky I. Heparanase enhances myeloma progression via cxcl10 downregulation. Leukemia. 2014;28:2178–2187. doi: 10.1038/leu.2014.121.
    1. Zhou Z.J., Wang J.M., Cao R.H., Morita H., Soininen R., Chan K.M., Liu B., Cao Y.H., Tryggvason K. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 2004;64:4699–4702. doi: 10.1158/0008-5472.CAN-04-0810.
    1. Marchisone C., Del Grosso F., Masiello L., Prat M., Santi L., Noonan D.M. Phenotypic alterations in kaposi's sarcoma cells by antisense reduction of perlecan. Pathol. Oncol. Res. 2000;6:10–17. doi: 10.1007/BF03032652.
    1. Mongiat M., Sweeney S.M., San Antonio J.D., Fu J., Iozzo R.V. Endorepellin, a novel inhibitor of angiogenesis derived from the c terminus of perlecan. J. Biol. Chem. 2003;278:4238–4249. doi: 10.1074/jbc.M210445200.
    1. West D.C., Kumar S. Hyaluronan and angiogenesis. Ciba. Found. Symp. 1989;143:187–201.
    1. Kosaki R., Watanabe K., Yamaguchi Y. Overproduction of hyaluronan by expression of the hyaluronan synthase has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 1999;59:1141–1145.
    1. Bharadwaj A.G., Rector K., Simpson M.A. Inducible hyaluronan production reveals differential effects on prostate tumor cell growth and tumor angiogenesis. J. Biol. Chem. 2007;282:20561–20572. doi: 10.1074/jbc.M702964200.
    1. Du L., Wang H.Y., He L.Y., Zhang J.Y., Ni B.Y., Wang X.H., Jin H.J., Cahuzac N., Mehrpour M., Lu Y.Y., et al. Cd44 is of functional importance for colorectal cancer stem cells. Clin. Cancer Res. 2008;14:6751–6760. doi: 10.1158/1078-0432.CCR-08-1034.
    1. Yu Q., Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates tgf-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–176.
    1. Alexander C.M., Reichsman F., Hinkes M.T., Lincecum J., Becker K.A., Cumberledge S., Bernfield M. Syndecan-1 is required for wnt-1-induced mammary tumorigenesis in mice. Nat. Genet. 2000;25:329–332. doi: 10.1038/77108.
    1. Maeda T., Desouky J., Friedl A. Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene. 2006;25:1408–1412. doi: 10.1038/sj.onc.1209168.
    1. Llaneza A., Vizoso F., Rodriguez J.C., Raigoso P., Garcia-Muniz J.L., Allende M.T., Garcia-Moran M. Hyaluronic acid as prognostic marker in resectable colorectal cancer. Br. J. Surg. 2000;87:1690–1696. doi: 10.1046/j.1365-2168.2000.01586.x.
    1. Spinelli F.M., Vitale D.L., Demarchi G., Cristina C., Alaniz L. The immunological effect of hyaluronan in tumor angiogenesis. Clin. Transl. Immunol. 2015;4:e52. doi: 10.1038/cti.2015.35.
    1. Xu X.M., Chen Y., Chen J., Yang S., Gao F., Underhill C.B., Creswell K., Zhang L. A peptide with three hyaluronan binding motifs inhibits tumor growth and induces apoptosis. Cancer Res. 2003;63:5685–5690.
    1. Belting M., Borsig L., Fuster M.M., Brown J.R., Persson L., Fransson L.A., Esko J.D. Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc. Natl. Acad. Sci. USA. 2002;99:371–376. doi: 10.1073/pnas.012346499.
    1. Esko J.D., Rostand K.S., Weinke J.L. Tumor formation dependent on proteoglycan biosynthesis. Science. 1988;241:1092–1096. doi: 10.1126/science.3137658.
    1. Dai Y., Yang Y., MacLeod V., Yue X., Rapraeger A.C., Shriver Z., Venkataraman G., Sasisekharan R., Sanderson R.D. Hsulf-1 and hsulf-2 are potent inhibitors of myeloma tumor growth in vivo. J. Biochem. Physiol. 2005;280:40066–40073.
    1. He X., Khurana A., Roy D., Kaufmann S., Shridhar V. Loss of hsulf-1 expression enhances tumorigenicity by inhibiting bim expression in ovarian cancer. Int. J. Cancer. 2014;135:1783–1789. doi: 10.1002/ijc.28818.
    1. Lai J.P., Oseini A.M., Moser C.D., Yu C.R., Elsawa S.F., Hu C.L., Nakamura I., Han T., Aderca I., Isomoto H., et al. The oncogenic effect of sulfatase 2 in human hepatocellular carcinoma is mediated in part by glypican 3-dependent wnt activation. Hepatology. 2010;52:1680–1689. doi: 10.1002/hep.23848.
    1. Nakatsura T., Yoshitake Y., Senju S., Monji M., Komori H., Motomura Y., Hosaka S., Beppu T., Ishiko T., Kamohara H., et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem. Biophys. Res. Commun. 2003;306:16–25. doi: 10.1016/S0006-291X(03)00908-2.
    1. Aviezer D., Hecht D., Safran M., Eisinger M., David G., Yayon A. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell. 1994;79:1005–1013. doi: 10.1016/0092-8674(94)90031-0.
    1. Mathiak M., Yenisey C., Grant D.S., Sharma B., Iozzo R.V. A role for perlecan in the suppression of growth and invasion in fibrosarcoma cells. Cancer Res. 1997;57:2130–2136.
    1. Sharma B., Handler M., Eichstetter I., Whitelock J.M., Nugent M.A., Iozzo R.V. Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J. Clin. Investig. 1998;102:1599–1608. doi: 10.1172/JCI3793.
    1. Rivera C., Zandonadi F.S., Sanchez-Romero C., Soares C.D., Granato D.C., Gonzalez-Arriagada W.A., Paes Leme A.F. Agrin has a pathological role in the progression of oral cancer. Br. J. Cancer. 2018;118:1628–1638. doi: 10.1038/s41416-018-0135-5.
    1. Szarvas T., Reis H., Kramer G., Shariat S.F., vom Dorp F., Tschirdewahn S., Schmid K.W., Kovalszky I., Rubben H. Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer. Hum. Pathol. 2014;45:674–682. doi: 10.1016/j.humpath.2013.10.036.
    1. Yang Y., Yaccoby S., Liu W., Langford J.K., Pumphrey C.Y., Theus A., Epstein J., Sanderson R.D. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood. 2002;100:610–617. doi: 10.1182/blood.V100.2.610.
    1. Dhodapkar M.V., Abe E., Theus A., Lacy M., Langford J.K., Barlogie B., Sanderson R.D. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: Control of tumor cell survival, growth, and bone cell differentiation. Blood. 1998;91:2679–2688.
    1. van den Berg B.M., Nieuwdorp M., Stroes E.S., Vink H. Glycocalyx and endothelial (dys) function: From mice to men. Pharmacol. Rep. 2006;58:75–80.
    1. Kang H., Fan Y., Sun A., Deng X. Compositional or charge density modification of the endothelial glycocalyx accelerates flow-dependent concentration polarization of low-density lipoproteins. Exp. Biol. Med. 2011;236:800–807. doi: 10.1258/ebm.2011.011072.
    1. Lee D., Oh E.S., Woods A., Couchman J.R., Lee W. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate. J. Biochem. Physiol. 1998;273:13022–13029. doi: 10.1074/jbc.273.21.13022.
    1. Paszek M.J., Boettiger D., Weaver V.M., Hammer D.A. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLos Comput. Biol. 2009;5:e1000604. doi: 10.1371/journal.pcbi.1000604.
    1. Walker J.L., Fournier A.K., Assoian R.K. Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. Cytokine Growth Factor Rev. 2005;16:395–405. doi: 10.1016/j.cytogfr.2005.03.003.
    1. Guo L., Wu C.Y. Regulation of fibronectin matrix deposition and cell proliferation by the pinch-ilk-ch-ilkbp complex. FASEB J. 2002;16:1298–1300. doi: 10.1096/fj.02-0089fje.
    1. Woods E.C., Kai F., Barnes J.M., Pedram K., Pickup M.W., Hollander M.J., Weaver V.M., Bertozzi C.R. A bulky glycocalyx fosters metastasis formation by promoting g1 cell cycle progression. Elife. 2017;6:e25752. doi: 10.7554/eLife.25752.
    1. Paszek M.J., DuFort C.C., Rossier O., Bainer R., Mouw J.K., Godula K., Hudak J.E., Lakins J.N., Wijekoon A.C., Cassereau L., et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature. 2014;511:319–325. doi: 10.1038/nature13535.
    1. Hompland T., Lund K.V., Ellingsen C., Kristensen G.B., Rofstad E.K. Peritumoral interstitial fluid flow velocity predicts survival in cervical carcinoma. Radiother Oncol. 2014;113:132–138. doi: 10.1016/j.radonc.2014.09.011.
    1. Bockhorn M., Roberge S., Sousa C., Jain R.K., Munn L.L. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res. 2004;64:2469–2473. doi: 10.1158/0008-5472.CAN-03-0256.
    1. Yao Y., Rabodzey A., Dewey C.F., Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1023–H1030. doi: 10.1152/ajpheart.00162.2007.
    1. Ebong E.E., Lopez-Quintero S.V., Rizzo V., Spray D.C., Tarbell J.M. Shear-induced endothelial nos activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr. Biol. 2014;6:338–347. doi: 10.1039/C3IB40199E.
    1. Williams D.A., Flood M.H. Capillary tone: Cyclooxygenase, shear stress, luminal glycocalyx, and hydraulic conductivity (lp) Physiol. Rep. 2015;3:e12370. doi: 10.14814/phy2.12370.
    1. Liu J., Kang H., Ma X., Sun A., Luan H., Deng X., Fan Y. Vascular cell glycocalyx-mediated vascular remodeling induced by hemodynamic environmental alteration. Hypertension. 2018;71:1201–1209. doi: 10.1161/HYPERTENSIONAHA.117.10678.
    1. Tarbell J.M., Shi Z.D. Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech. Model. Mechan. 2013;12:111–121. doi: 10.1007/s10237-012-0385-8.
    1. Shi Z.D., Wang H., Tarbell J.M. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating mmp-13 expression and cell motility via fak-erk in 3d collagen. PLoS ONE. 2011;6:e15956. doi: 10.1371/journal.pone.0015956.
    1. Qazi H., Palomino R., Shi Z.D., Munn L.L., Tarbell J.M. Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion. Integr. Biol. 2013;5:1334–1343. doi: 10.1039/c3ib40057c.
    1. Qazi H., Shi Z.D., Song J.W., Cancel L.M., Huang P., Zeng Y., Roberge S., Munn L.L., Tarbell J.M. Heparan sulfate proteoglycans mediate renal carcinoma metastasis. Int. J. Cancer. 2016;139:2791–2801. doi: 10.1002/ijc.30397.
    1. Shibue T., Weinberg R.A. Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl. Acad. Sci. USA. 2009;106:10290–10295. doi: 10.1073/pnas.0904227106.
    1. Chakraborty S., Njah K., Pobbati A.V., Lim Y.B., Raju A., Lakshmanan M., Tergaonkar V., Lim C.T., Hong W.J. Agrin as a mechanotransduction signal regulating yap through the hippo pathway. Cell Rep. 2017;18:2464–2479. doi: 10.1016/j.celrep.2017.02.041.
    1. Xiong W.C., Mei L. Agrin to yap in cancer and neuromuscular junctions. Trends Cancer. 2017;3:247–248. doi: 10.1016/j.trecan.2017.03.005.
    1. Terkelsen T., Haakensen V.D., Saldova R., Gromov P., Hansen M.K., Stockmann H., Lingjaerde O.C., Borresen-Dale A.L., Papaleo E., Helland A., et al. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients: Association with tumor biology and clinical outcome. Mol. Oncol. 2018;12:972–990. doi: 10.1002/1878-0261.12312.
    1. Chen I.H., Aguilar H.A., Paez J.S.P., Wu X.F., Pan L., Wendt M.K., Iliuk A.B., Zhang Y., Tao W.A. Analytical pipeline for discovery and verification of glycoproteins from plasma-derived extracellular vesicles as breast cancer biomarkers. Anal. Chem. 2018;90:6307–6313. doi: 10.1021/acs.analchem.8b01090.
    1. Sartorius C.M., Schoetzau A., Kettelhack H., Fink D., Hacker N.F., Fedier A., Jacob F., Heinzelmann-Schwarz V. Abo blood groups as a prognostic factor for recurrence in ovarian and vulvar cancer. PLoS ONE. 2018;13
    1. Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem. Sci. 2003;28:145–151. doi: 10.1016/S0968-0004(03)00031-8.
    1. Parish C.R., Freeman C., Brown K.J., Francis D.J., Cowden W.B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59:3433–3441.
    1. Jayson G.C., Miller G.J., Hansen S.U., Barath M., Gardiner J.M., Avizienyte E. The development of anti-angiogenic heparan sulfate oligosaccharides. Biochem Soc. Trans. 2014;42:1596–1600. doi: 10.1042/BST20140229.
    1. Dredge K., Hammond E., Davis K., Li C.P., Liu L., Johnstone K., Handley P., Wimmer N., Gonda T.J., Gautam A., et al. The pg500 series: Novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Investig. New Drug. 2010;28:276–283. doi: 10.1007/s10637-009-9245-5.
    1. Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat. Rev. Cancer. 2012;12:278–287. doi: 10.1038/nrc3236.
    1. Accardi L., Di Bonito P. Antibodies in single-chain format against tumour-associated antigens: Present and future applications. Curr. Med. Chem. 2010;17:1730–1755. doi: 10.2174/092986710791111215.
    1. Van Kuppevelt T.H., Dennissen M.A., van Venrooij W.J., Hoet R.M., Veerkamp J.H. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J. Biochem. Physiol. 1998;273:12960–12966.
    1. Christianson H.C., van Kuppevelt T.H., Belting M. Scfv anti-heparan sulfate antibodies unexpectedly activate endothelial and cancer cells through p38 mapk: Implications for antibody-based targeting of heparan sulfate proteoglycans in cancer. PLoS ONE. 2012;7:e49092. doi: 10.1371/journal.pone.0049092.
    1. Gao W., Kim H., Feng M.Q., Phung Y., Xavier C.P., Rubin J.S., Ho M. Inactivation of wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology. 2014;60:576–587. doi: 10.1002/hep.26996.
    1. Ishiguro T., Sugimoto M., Kinoshita Y., Miyazaki Y., Nakano K., Tsunoda H., Sugo I., Ohizumi I., Aburatani H., Hamakubo T., et al. Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res. 2008;68:9832–9838. doi: 10.1158/0008-5472.CAN-08-1973.
    1. Komori H., Nakatsura T., Senju S., Yoshitake Y., Motomura Y., Ikuta Y., Fukuma D., Yokomine K., Harao M., Beppu T., et al. Identification of hla-a2-or hla-a24-restricted ctl epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin. Cancer Res. 2006;12:2689–2697. doi: 10.1158/1078-0432.CCR-05-2267.
    1. Nakatsura T., Kageshita T., Ito S., Wakamatsu K., Monji M., Ikuta Y., Senju S., Ono T., Nishimura Y. Identification of glypican-3 as a novel tumor marker for melanoma. Clin. Cancer Res. 2004;10:6612–6621. doi: 10.1158/1078-0432.CCR-04-0348.
    1. Motomura Y., Senju S., Nakatsura T., Matsuyoshi H., Hirata S., Monji N., Komori H., Fukuma D., Baba H., Nishimura Y. Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, b16-f10. Cancer Res. 2006;66:2414–2422. doi: 10.1158/0008-5472.CAN-05-2090.
    1. Ho M., Kim H. Glypican-3: A new target for cancer immunotherapy. Eur. J. Cancer. 2011;47:333–338. doi: 10.1016/j.ejca.2010.10.024.
    1. Lokeshwar V.B., Mirza S., Jordan A. Targeting hyaluronic acid family for cancer chemoprevention and therapy. Adv. Cancer Res. 2014;123:35–65.
    1. Kultti A., Pasonen-Seppanen S., Jauhiainen M., Rilla K.J., Karna R., Pyoria E., Tammi R.H., Tammi M.I. 4-methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular udp-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp. Cell Res. 2009;315:1914–1923. doi: 10.1016/j.yexcr.2009.03.002.
    1. Lokeshwar V.B., Lopez L.E., Munoz D., Chi A., Shirodkar S.P., Lokeshwar S.D., Escudero D.O., Dhir N., Altman N. Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res. 2010;70:2613–2623. doi: 10.1158/0008-5472.CAN-09-3185.
    1. Urakawa H., Nishida Y., Wasa J., Arai E., Zhuo L., Kimata K., Kozawa E., Futamura N., Ishiguro N. Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo. Int. J. Cancer. 2012;130:454–466. doi: 10.1002/ijc.26014.
    1. Uchakina O.N., Ban H., McKallip R.J. Targeting hyaluronic acid production for the treatment of leukemia: Treatment with 4-methylumbelliferone leads to induction of mapk-mediated apoptosis in k562 leukemia. Leuk. Res. 2013;37:1294–1301. doi: 10.1016/j.leukres.2013.07.009.
    1. Ghatak S., Misra S., Toole B.P. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/akt cell survival pathway. J. Biochem. Physiol. 2002;277:38013–38020. doi: 10.1074/jbc.M202404200.
    1. Slomiany M.G., Dai L., Bomar P.A., Knackstedt T.J., Kranc D.A., Tolliver L., Maria B.L., Toole B.P. Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-cd44 interactions with small hyaluronan oligosaccharides. Cancer Res. 2009;69:4992–4998. doi: 10.1158/0008-5472.CAN-09-0143.
    1. Pilon-Thomas S., Verhaegen M., Kuhn L., Riker A., Mule J.J. Induction of anti-tumor immunity by vaccination with dendritic cells pulsed with anti-cd44 igg opsonized tumor cells. Cancer Immunol. Immunother. 2006;55:1238–1246. doi: 10.1007/s00262-005-0104-8.
    1. Shah V., Taratula O., Garbuzenko O.B., Taratula O.R., Rodriguez-Rodriguez L., Minko T. Targeted nanomedicine for suppression of cd44 and simultaneous cell death induction in ovarian cancer: An optimal delivery of sirna and anticancer drug. Clin. Cancer Res. 2013;19:6193–6204. doi: 10.1158/1078-0432.CCR-13-1536.
    1. Rajasagi M., von Au A., Singh R., Hartmann N., Zoller M., Marhaba R. Anti-cd44 induces apoptosis in t lymphoma via mitochondrial depolarization. J. Cell Mol. Med. 2010;14:1453–1467. doi: 10.1111/j.1582-4934.2009.00909.x.
    1. Isoyama T., Thwaites D., Selzer M.G., Carey R.I., Barbucci R., Lokeshwar V.B. Differential selectivity of hyaluronidase inhibitors toward acidic and basic hyaluronidases. Glycobiology. 2006;16:11–21. doi: 10.1093/glycob/cwj036.
    1. Dedes P.G., Gialeli C., Tsonis A.I., Kanakis I., Theocharis A.D., Kletsas D., Tzanakakis G.N., Karamanos N.K. Expression of matrix macromolecules and functional properties of breast cancer cells are modulated by the bisphosphonate zoledronic acid. Biochim. Biophys. Acta. 2012;1820:1926–1939. doi: 10.1016/j.bbagen.2012.07.013.
    1. Paul A.G., Sharma-Walia N., Chandran B. Targeting kshv/hhv-8 latency with cox-2 selective inhibitor nimesulide: A potential chemotherapeutic modality for primary effusion lymphoma. PLoS ONE. 2011;6:e24379.
    1. Ikeda H., Hideshima T., Fulciniti M., Lutz R.J., Yasui H., Okawa Y., Kiziltepe T., Vallet S., Pozzi S., Santo L., et al. The monoclonal antibody nbt062 conjugated to cytotoxic maytansinoids has selective cytotoxicity against cd138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res. 2009;15:4028–4037. doi: 10.1158/1078-0432.CCR-08-2867.
    1. Rousseau C., Ruellan A.L., Bernardeau K., Kraeber-Bodere F., Gouard S., Loussouarn D., Sai-Maurel C., Faivre-Chauvet A., Wijdenes J., Barbet J., et al. Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-pet and radioimmunotherapy. A preclinical study on mda-mb-468 xenograft tumors. EJNMMI Res. 2011;1:20. doi: 10.1186/2191-219X-1-20.
    1. Beauvais D.M., Ell B.J., McWhorter A.R., Rapraeger A.C. Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J. Exp. Med. 2009;206:691–705. doi: 10.1084/jem.20081278.
    1. Gong W., Liu Y., Huang B., Lei Z., Wu F.H., Li D., Feng Z.H., Zhang G.M. Recombinant cbd-hepii polypeptide of fibronectin inhibits alphavbeta3 signaling and hematogenous metastasis of tumor. Biochem. Biophys. Res. Commun. 2008;367:144–149. doi: 10.1016/j.bbrc.2007.12.110.
    1. Pei X.Y., Dai Y., Youssefian L.E., Chen S., Bodie W.W., Takabatake Y., Felthousen J., Almenara J.A., Kramer L.B., Dent P., et al. Cytokinetically quiescent (g0/g1) human multiple myeloma cells are susceptible to simultaneous inhibition of chk1 and mek1/2. Blood. 2011;118:5189–5200. doi: 10.1182/blood-2011-02-339432.
    1. Ramya D., Siddikuzzaman, Grace V.M. Effect of all-trans retinoic acid (atra) on syndecan-1 expression and its chemoprotective effect in benzo(alpha)pyrene-induced lung cancer mice model. Immunopharmacol. Immunotoxicol. 2012;34:1020–1027. doi: 10.3109/08923973.2012.693086.
    1. Choi S., Kang D.H., Oh E.S. Targeting syndecans: A promising strategy for the treatment of cancer. Expert Opin. Ther. Targets. 2013;17:695–705. doi: 10.1517/14728222.2013.773313.

Source: PubMed

3
購読する