Linear growth in preschool children treated with mass azithromycin distributions for trachoma: A cluster-randomized trial

Jeremy D Keenan, Sintayehu Gebresillasie, Nicole E Stoller, Berhan A Haile, Zerihun Tadesse, Sun Y Cotter, Kathryn J Ray, Kristen Aiemjoy, Travis C Porco, E Kelly Callahan, Paul M Emerson, Thomas M Lietman, Jeremy D Keenan, Sintayehu Gebresillasie, Nicole E Stoller, Berhan A Haile, Zerihun Tadesse, Sun Y Cotter, Kathryn J Ray, Kristen Aiemjoy, Travis C Porco, E Kelly Callahan, Paul M Emerson, Thomas M Lietman

Abstract

Background: Mass azithromycin distributions have been shown to reduce mortality among pre-school children in sub-Saharan Africa. It is unclear what mediates this mortality reduction, but one possibility is that antibiotics function as growth promoters for young children.

Methods and findings: 24 rural Ethiopian communities that had received biannual mass azithromycin distributions over the previous four years were enrolled in a parallel-group, cluster-randomized trial. Communities were randomized in a 1:1 ratio to either continuation of biannual oral azithromycin (20mg/kg for children, 1 g for adults) or to no programmatic antibiotics over the 36 months of the study period. All community members 6 months and older were eligible for the intervention. The primary outcome was ocular chlamydia; height and weight were measured as secondary outcomes on children less than 60 months of age at months 12 and 36. Study participants were not masked; anthropometrists were not informed of the treatment allocation. Anthropometric measurements were collected for 282 children aged 0-36 months at the month 12 assessment and 455 children aged 0-59 months at the month 36 assessment, including 207 children who had measurements at both time points. After adjusting for age and sex, children were slightly but not significantly taller in the biannually treated communities (84.0 cm, 95%CI 83.2-84.8, in the azithromycin-treated communities vs. 83.7 cm, 95%CI 82.9-84.5, in the untreated communities; mean difference 0.31 cm, 95%CI -0.85 to 1.47, P = 0.60). No adverse events were reported.

Conclusions: Periodic mass azithromycin distributions for trachoma did not demonstrate a strong impact on childhood growth.

Trial registration: The TANA II trial was registered on clinicaltrials.gov #NCT01202331.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Participant flow.
Fig 1. Participant flow.
Communities were randomized twice: originally as part of the TANA I trial (2006–2009), and subsequently as part of TANA II (2010–2013).

References

    1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367(9524):1747–57. 10.1016/S0140-6736(06)68770-9 .
    1. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371(9608):243–60. Epub 2008/01/22. 10.1016/S0140-6736(07)61690-0 .
    1. Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. The American journal of clinical nutrition. 2004;80(1):193–8. Epub 2004/06/24. 10.1093/ajcn/80.1.193 .
    1. Katona P, Katona-Apte J. The interaction between nutrition and infection. Clin Infect Dis. 2008;46(10):1582–8. 10.1086/587658 .
    1. Prendergast A, Walker AS, Mulenga V, Chintu C, Gibb DM. Improved growth and anemia in HIV-infected African children taking cotrimoxazole prophylaxis. Clin Infect Dis. 2011;52(7):953–6. Epub 2011/03/24. 10.1093/cid/cir029 .
    1. Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci. 2005;84(4):634–43. Epub 2005/04/23. 10.1093/ps/84.4.634 .
    1. Porco TC, Gebre T, Ayele B, House J, Keenan J, Zhou Z, et al. Effect of mass distribution of azithromycin for trachoma control on overall mortality in Ethiopian children: a randomized trial. JAMA. 2009;302(9):962–8. Epub 2009/09/03. 10.1001/jama.2009.1266 .
    1. Keenan JD, Bailey RL, West SK, Arzika AM, Hart J, Weaver J, et al. Azithromycin to Reduce Childhood Mortality in Sub-Saharan Africa. N Engl J Med. 2018;378(17):1583–92. Epub 2018/04/26. 10.1056/NEJMoa1715474
    1. Sadiq ST, Glasgow KW, Drakeley CJ, Muller O, Greenwood BM, Mabey DC, et al. Effects of azithromycin on malariometric indices in The Gambia. Lancet. 1995;346(8979):881–2. Epub 1995/09/30. .
    1. Coles CL, Seidman JC, Levens J, Mkocha H, Munoz B, West S. Association of mass treatment with azithromycin in trachoma-endemic communities with short-term reduced risk of diarrhea in young children. Am J Trop Med Hyg. 2011;85(4):691–6. Epub 2011/10/07. 10.4269/ajtmh.2011.11-0046
    1. Coles CL, Levens J, Seidman JC, Mkocha H, Munoz B, West S. Mass distribution of azithromycin for trachoma control is associated with short-term reduction in risk of acute lower respiratory infection in young children. Pediatr Infect Dis J. 2012;31(4):341–6. Epub 2011/12/17. 10.1097/INF.0b013e31824155c9 .
    1. Benjamin-Chung J, Abedin J, Berger D, Clark A, Jimenez V, Konagaya E, et al. Spillover effects on health outcomes in low- and middle-income countries: a systematic review. Int J Epidemiol. 2017;46(4):1251–76. Epub 2017/04/28. 10.1093/ije/dyx039 .
    1. Keenan JD, Tadesse Z, Gebresillasie S, Shiferaw A, Zerihun M, Emerson PM, et al. Mass azithromycin distribution for hyperendemic trachoma following a cluster-randomized trial: A continuation study of randomly reassigned subclusters (TANA II). PLoS Med. 2018;15(8):e1002633 Epub 2018/08/15. 10.1371/journal.pmed.1002633 .
    1. Gebre T, Ayele B, Zerihun M, Genet A, Stoller NE, Zhou Z, et al. Comparison of annual versus twice-yearly mass azithromycin treatment for hyperendemic trachoma in Ethiopia: a cluster-randomised trial. Lancet. 2012;379(9811):143–51. Epub 2011/12/24. 10.1016/S0140-6736(11)61515-8 .
    1. Ayele B, Gebre T, House JI, Zhou Z, McCulloch CE, Porco TC, et al. Adverse events after mass azithromycin treatments for trachoma in Ethiopia. The American journal of tropical medicine and hygiene. 2011;85(2):291–4. Epub 2011/08/05. 10.4269/ajtmh.2011.11-0056
    1. Ayele B, Aemere A, Gebre T, Tadesse Z, Stoller NE, See CW, et al. Reliability of measurements performed by community-drawn anthropometrists from rural Ethiopia. PLoS One. 2012;7(1):e30345 Epub 2012/02/01. 10.1371/journal.pone.0030345
    1. Amza A, Yu SN, Kadri B, Nassirou B, Stoller NE, Zhou Z, et al. Does mass azithromycin distribution impact child growth and nutrition in Niger? A cluster-randomized trial. PLoS Negl Trop Dis. 2014;8(9):e3128 Epub 2014/09/12. 10.1371/journal.pntd.0003128
    1. Jones KD, Thitiri J, Ngari M, Berkley JA. Childhood malnutrition: toward an understanding of infections, inflammation, and antimicrobials. Food Nutr Bull. 2014;35(2 Suppl):S64–70. 10.1177/15648265140352S110
    1. Brussow H. Growth promotion and gut microbiota: insights from antibiotic use. Environ Microbiol. 2015;17(7):2216–27. Epub 2015/01/30. 10.1111/1462-2920.12786 .
    1. Trehan I, Shulman RJ, Ou CN, Maleta K, Manary MJ. A randomized, double-blind, placebo-controlled trial of rifaximin, a nonabsorbable antibiotic, in the treatment of tropical enteropathy. Am J Gastroenterol. 2009;104(9):2326–33. Epub 2009/06/06. 10.1038/ajg.2009.270
    1. Gough EK, Moodie EE, Prendergast AJ, Johnson SM, Humphrey JH, Stoltzfus RJ, et al. The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials. BMJ. 2014;348:g2267 Epub 2014/04/17. 10.1136/bmj.g2267
    1. Trehan I, Goldbach HS, LaGrone LN, Meuli GJ, Wang RJ, Maleta KM, et al. Antibiotics as part of the management of severe acute malnutrition. N Engl J Med. 2013;368(5):425–35. Epub 2013/02/01. 10.1056/NEJMoa1202851
    1. Isanaka S, Langendorf C, Berthe F, Gnegne S, Li N, Ousmane N, et al. Routine Amoxicillin for Uncomplicated Severe Acute Malnutrition in Children. N Engl J Med. 2016;374(5):444–53. Epub 2016/02/04. 10.1056/NEJMoa1507024 .
    1. Edmonson MB, Eickhoff JC. Weight Gain and Obesity in Infants and Young Children Exposed to Prolonged Antibiotic Prophylaxis. JAMA Pediatr. 2017;171(2):150–6. 10.1001/jamapediatrics.2016.3349 .
    1. Robinson P, Schechter MS, Sly PD, Winfield K, Smith J, Brennan S, et al. Clarithromycin therapy for patients with cystic fibrosis: a randomized controlled trial. Pediatr Pulmonol. 2012;47(6):551–7. 10.1002/ppul.21613 .
    1. Guzman MA, Scrimshaw NS, Monroe RJ. Growth and development of Central American children. I. Growth responses of rural Guatemalan school children to daily administration of penicillin and aureomycin. Am J Clin Nutr. 1958;6(4):430–8. 10.1093/ajcn/6.4.430 .
    1. Gupta MC, Urrutia JJ. Effect of periodic antiascaris and antigiardia treatment on nutritional status of preschool children. Am J Clin Nutr. 1982;36(1):79–86. 10.1093/ajcn/36.1.79 .
    1. Amza A, Kadri B, Nassirou B, Stoller NE, Yu SN, Zhou Z, et al. A cluster-randomized controlled trial evaluating the effects of mass azithromycin treatment on growth and nutrition in Niger. Am J Trop Med Hyg. 2013;88(1):138–43. Epub 2012/12/05. 10.4269/ajtmh.2012.12-0284
    1. Burr SE, Hart J, Edwards T, Harding-Esch EM, Holland MJ, Mabey DC, et al. Anthropometric indices of Gambian children after one or three annual rounds of mass drug administration with azithromycin for trachoma control. BMC Public Health. 2014;14:1176 Epub 2014/11/20. 10.1186/1471-2458-14-1176
    1. Skalet AH, Cevallos V, Ayele B, Gebre T, Zhou Z, Jorgensen JH, et al. Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: a cluster-randomized clinical trial. PLoS Med. 2010;7(12):e1000377 Epub 2010/12/24. 10.1371/journal.pmed.1000377
    1. Ayele B, Belay T, Gebre T, Zerihun M, Amere A, Assefa Y, et al. Association of community antibiotic consumption with clinically active trachoma in rural Ethiopia. Int Health. 2011;3(4):282–8. Epub 2012/01/17. 10.1016/j.inhe.2011.06.001
    1. Fry AM, Jha HC, Lietman TM, Chaudhary JS, Bhatta RC, Elliott J, et al. Adverse and beneficial secondary effects of mass treatment with azithromycin to eliminate blindness due to trachoma in Nepal. Clin Infect Dis. 2002;35(4):395–402. Epub 2002/07/30. 10.1086/341414

Source: PubMed

3
購読する