Effects of protein-rich nutritional supplementation and bisphosphonates on body composition, handgrip strength and health-related quality of life after hip fracture: a 12-month randomized controlled study

Lena Flodin, Tommy Cederholm, Maria Sääf, Eva Samnegård, Wilhelmina Ekström, Amer N Al-Ani, Margareta Hedström, Lena Flodin, Tommy Cederholm, Maria Sääf, Eva Samnegård, Wilhelmina Ekström, Amer N Al-Ani, Margareta Hedström

Abstract

Background: The catabolic state that follows hip fracture contributes to loss of muscle mass and strength, that is sarcopenia, which impacts functional ability and health-related quality of life. Measures to prevent such long-term postoperative consequences are of important concern. The aim of this study was to evaluate the combined effects of protein-rich nutritional supplementation and bisphosphonate on body composition, handgrip strength and health-related quality of life following hip fracture.

Methods: The study included 79 men and women with hip fracture, mean age 79 years (SD 9), without severe cognitive impairment, who were ambulatory and living independently before fracture. Patients were randomized postoperatively to receive liquid supplementation that provided 40 g of protein and 600 kcal daily for six months after the fracture, in addition to bisphosphonates once weekly for 12 months (group N, n = 26), or bisphosphonates alone once weekly for 12 months (group B, n = 28). All patients, including the controls (group C, n = 25) received calcium 1 g and vitamin D3 800 IU daily. Body composition as measured by dual-energy X-ray absorptiometry (DXA), handgrip strength (HGS) and health-related quality of life (HRQoL) were registered at baseline, six and 12 months postoperatively.

Results: There were no differences among the groups regarding change in fat-free mass index (FFMI), HGS, or HRQoL during the study year. Intra-group analyses showed improvement of HGS between baseline and six months in the N group (P = 0.04). HRQoL decreased during the first year in the C and B groups (P = 0.03 and P = 0.01, respectively) but not in the nutritional supplementation N group (P = 0.22).

Conclusions: Protein-rich nutritional supplementation was unable to preserve FFMI more effectively than vitamin D and calcium alone, or combined with bisphosphonate, in this relatively healthy group of hip fracture patients. However, trends toward positive effects on both HGS and HRQoL were observed following nutritional supplementation.

Trial registration: Clinicaltrials.gov NCT01950169 (Date of registration 23 Sept 2013).

Figures

Fig. 1
Fig. 1
Flow chart of participants
Fig. 2
Fig. 2
Relationship between appendicular lean mass index and handgrip strength at baseline
Fig. 3
Fig. 3
Outcome of EQ-5D index in different treatment groups at baseline, 6 and 12 months postoperatively. Group C, Controls = vitamin D and calcium for 12 months; B = risedronate, vitamin D and calcium for 12 months; N = protein and energy supplementation for 6 months, and risedronate, vitamin D and calcium for 12 months

References

    1. Al-Ani AN, Flodin L, Soderqvist A, Ackermann P, Samnegard E, Dalen N, et al. Does rehabilitation matter in patients with femoral neck fracture and cognitive impairment? A prospective study of 246 patients. Arch Phys Med Rehabil. 2010;91(1):51–7.
    1. Samuelsson B, Hedstrom MI, Ponzer S, Soderqvist A, Samnegard E, Thorngren KG, et al. Gender differences and cognitive aspects on functional outcome after hip fracture--a 2 years’ follow-up of 2,134 patients. Age Ageing. 2009;38(6):686–92.
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.
    1. Bachrach-Lindstrom MA, Ek AC, Unosson M. Nutritional state and functional capacity among elderly Swedish people with acute hip fracture. Scand J Caring Sci. 2000;14(4):268–74. doi: 10.1111/j.1471-6712.2000.tb00595.x.
    1. Bell J, Bauer J, Capra S, Pulle CR. Barriers to nutritional intake in patients with acute hip fracture: time to treat malnutrition as a disease and food as a medicine? Can J Physiol Pharmacol. 2013;91(6):489–95. doi: 10.1139/cjpp-2012-0301.
    1. Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R. Sarcopenia is more prevalent in men than in women after hip fracture: a cross-sectional study of 591 inpatients. Arch Gerontol Geriat. 2012;55(2):e48–52. doi: 10.1016/j.archger.2012.05.002.
    1. Hida T, Ishiguro N, Shimokata H, Sakai Y, Matsui Y, Takemura M, et al. High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int. 2013;13(2):413–20.
    1. Fox KM, Magaziner J, Hawkes WG, Yu-Yahiro J, Hebel JR, Zimmerman SI, et al. Loss of Bone Density and Lean Body Mass after Hip Fracture. Osteoporosis Int. 2000;11(1):31–5.
    1. Karlsson M, Nilsson JA, Sernbo I, Redlund-Johnell I, Johnell O, Obrant KJ, et al. Changes of bone mineral mass and soft tissue composition after hip fracture. Bone. 1996;18(1):19–22.
    1. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76(2):473–81.
    1. Koval KJ, Skovron ML, Aharonoff GB, Meadows SE, Zuckerman JD. Ambulatory ability after hip fracture. A prospective study in geriatric patients. Clin Orthop Rel Res. 1995;310:150–9.
    1. Avenell A, Handoll HH. Nutritional supplementation for hip fracture aftercare in older people. Cochrane Database Syst Rev (Online) 2010;1:CD001880.
    1. Tidermark J, Ponzer S, Carlsson P, Soderqvist A, Brismar K, Tengstrand B, et al. Effects of protein-rich supplementation and nandrolone in lean elderly women with femoral neck fractures. Clin Nutr. 2004;23(4):587–96.
    1. Flodin L, Saaf M, Cederholm T, Al-Ani AN, Ackermann PW, Samnegard E, et al. Additive effects of nutritional supplementation, together with bisphosphonates, on bone mineral density after hip fracture: a 12-month randomized controlled study. Clin Interv Aging. 2014;9:1043–50.
    1. Schutz Y, Kyle UU, Pichard C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int J Obesity. 2002;26(7):953–60. doi: 10.1038/sj.ijo.0802037.
    1. Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003;19(7–8):597–604. doi: 10.1016/S0899-9007(03)00061-3.
    1. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.
    1. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11):1602–9.
    1. Bohannon RW, Schaubert KL. Test-retest reliability of grip-strength measures obtained over a 12-week interval from community-dwelling elders. J Hand Ther. 2005;18(4):426–7. doi: 10.1197/j.jht.2005.07.003.
    1. Peolsson A, Hedlund R, Oberg B. Intra- and inter-tester reliability and reference values for hand strength. J Rehabil Med. 2001;33(1):36–41. doi: 10.1080/165019701300006524.
    1. Burstrom K, Johannesson M, Diderichsen F. Swedish population health-related quality of life results using the EQ-5D. Qual Life Res. 2001;10(7):621–35. doi: 10.1023/A:1013171831202.
    1. Pfeiffer E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc. 1975;23(10):433–41. doi: 10.1111/j.1532-5415.1975.tb00927.x.
    1. Owens WD, Felts JA, Spitznagel EL., Jr ASA physical status classifications: a study of consistency of ratings. Anesthesiol. 1978;49(4):239–43. doi: 10.1097/00000542-197810000-00003.
    1. Bang P, Eriksson U, Sara V, Wivall IL, Hall K. Comparison of acid ethanol extraction and acid gel filtration prior to IGF-I and IGF-II radioimmunoassays: improvement of determinations in acid ethanol extracts by the use of truncated IGF-I as radioligand. Acta Endocrinol. 1991;124(6):620–9.
    1. Hilding A, Hall K, Wivall-Helleryd IL, Saaf M, Melin AL, Thoren M. Serum levels of insulin-like growth factor I in 152 patients with growth hormone deficiency, aged 19–82 years, in relation to those in healthy subjects. J Clin Endocrinol Metab. 1999;84(6):2013–9.
    1. Unden AL, Elofsson S, Knox S, Lewitt MS, Brismar K. IGF-I in a normal population: relation to psychosocial factors. Clin Endocrinol. 2002;57(6):793–803. doi: 10.1046/j.1365-2265.2002.01671.x.
    1. Andridge RR, Little RJ. A review of hot deck imputation for survey non-response. Int Statist Rev. 2010;78(1):40–64. doi: 10.1111/j.1751-5823.2010.00103.x.
    1. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300. doi: 10.1111/j.1532-5415.2011.03733.x.
    1. Ljungqvist O, Soop M, Hedstrom M. Why metabolism matters in elective orthopedic surgery: a review. Acta Orthop. 2007;78(5):610–5. doi: 10.1080/17453670710014293.
    1. Patterson BM, Cornell CN, Carbone B, Levine B, Chapman D. Protein depletion and metabolic stress in elderly patients who have a fracture of the hip. J Bone Joint Surg American volume. 1992;74(2):251–60.
    1. Hebuterne X, Bermon S, Schneider SM. Ageing and muscle: the effects of malnutrition, re-nutrition, and physical exercise. Curr Opin Clin Nutr Metab Care. 2001;4(4):295–300. doi: 10.1097/00075197-200107000-00009.
    1. Paillaud E, Bories PN, Le Parco JC, Campillo B. Nutritional status and energy expenditure in elderly patients with recent hip fracture during a 2-month follow-up. Brit J Nutr. 2000;83(2):97–103.
    1. Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60(1):16–23.
    1. Stout JR, Smith-Ryan AE, Fukuda DH, Kendall KL, Moon JR, Hoffman JR, et al. Effect of calcium beta-hydroxy-beta-methylbutyrate (CaHMB) with and without resistance training in men and women 65 + yrs: a randomized, double-blind pilot trial. Exp Gerontol. 2013;48(11):1303–10.
    1. Hedstrom M. Hip fracture patients, a group of frail elderly people with low bone mineral density, muscle mass and IGF-I levels. Acta Physiol. 1999;167(4):347–7.
    1. Sanada K, Miyachi M, Tanimoto M, Yamamoto K, Murakami H, Okumura S, et al. A cross-sectional study of sarcopenia in Japanese men and women: reference values and association with cardiovascular risk factors. Eur J Appl Physiol. 2010;110(1):57–65.
    1. Aronsson A, Al-Ani NA, Brismar K, Hedstrom M. A carbohydrate-rich drink shortly before surgery affected IGF-I bioavailability after a total hip replacement. A double-blind placebo controlled study on 29 patients. Aging Clin Exp Res. 2009;21(2):97–101. doi: 10.1007/BF03325216.
    1. Tieland M, Dirks ML, van der Zwaluw N, Verdijk LB, van de Rest O, de Groot LC, et al. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2012;13(8):713–9.
    1. Cederholm TE, Hellstrom KH. Reversibility of protein-energy malnutrition in a group of chronically-ill elderly outpatients. Clin Nutr. 1995;14(2):81–7. doi: 10.1016/S0261-5614(95)80027-1.
    1. Price R, Daly F, Pennington CR, McMurdo ME. Nutritional supplementation of very old people at hospital discharge increases muscle strength: a randomised controlled trial. Gerontology. 2005;51(3):179–85. doi: 10.1159/000083991.
    1. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.
    1. Tieland M, van de Rest O, Dirks ML, van der Zwaluw N, Mensink M, van Loon LJ, et al. Protein supplementation improves physical performance in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2012;13(8):720–6.
    1. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95(5):1851–60.
    1. Ekstrom W, Miedel R, Ponzer S, Hedstrom M, Samnegard E, Tidermark J. Quality of life after a stable trochanteric fracture--a prospective cohort study on 148 patients. J Orthop Trauma. 2009;23(1):39–44. doi: 10.1097/BOT.0b013e318191f5e4.
    1. Bruce D, Laurance I, McGuiness M, Ridley M, Goldswain P. Nutritional supplements after hip fracture: poor compliance limits effectiveness. Clin Nutr. 2003;22(5):497–500. doi: 10.1016/S0261-5614(03)00050-5.
    1. Miller MD, Daniels LA, Bannerman E, Crotty M. Adherence to nutrition supplements among patients with a fall-related lower limb fracture. Nutr Clin Pract. 2005;20(5):569–78. doi: 10.1177/0115426505020005569.

Source: PubMed

3
購読する