Core warming of coronavirus disease 2019 (COVID-19) patients undergoing mechanical ventilation-A protocol for a randomized controlled pilot study

Nathaniel Bonfanti, Emily Gundert, Anne M Drewry, Kristina Goff, Roger Bedimo, Erik Kulstad, Nathaniel Bonfanti, Emily Gundert, Anne M Drewry, Kristina Goff, Roger Bedimo, Erik Kulstad

Abstract

Background: Coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, is spreading rapidly across the globe, with little proven effective therapy. Fever is seen in most cases of COVID-19, at least at the initial stages of illness. Although fever is typically treated (with antipyretics or directly with ice or other mechanical means), increasing data suggest that fever is a protective adaptive response that facilitates recovery from infectious illness.

Objective: To describe a randomized controlled pilot study of core warming patients with COVID-19 undergoing mechanical ventilation.

Methods: This prospective single-site randomized controlled pilot study will enroll 20 patients undergoing mechanical ventilation for respiratory failure due to COVID-19. Patients will be randomized 1:1 to standard-of-care or to receive core warming via an esophageal heat exchanger commonly utilized in critical care and surgical patients. The primary outcome is patient viral load measured by lower respiratory tract sample. Secondary outcomes include severity of acute respiratory distress syndrome (as measured by PaO2/FiO2 ratio) 24, 48, and 72 hours after initiation of treatment, hospital and intensive care unit length of stay, duration of mechanical ventilation, and 30-day mortality.

Results: Resulting data will provide effect size estimates to guide a definitive multi-center randomized clinical trial. ClinicalTrials.gov registration number: NCT04426344.

Conclusions: With growing data to support clinical benefits of elevated temperature in infectious illness, this study will provide data to guide further understanding of the role of active temperature management in COVID-19 treatment and provide effect size estimates to power larger studies.

Conflict of interest statement

EK declares equity interest in Attune Medical. This does not alter our adherence to PLoS ONE policies on sharing data and materials.

References

    1. Mohr NM, Doerschug KC: Point: Should antipyretic therapy be given routinely to febrile patients in septic shock? Yes. Chest 2013, 144(4):1096–1098. 10.1378/chest.13-0916
    1. Ray JJ, Schulman CI: Fever: suppress or let it ride? Journal of thoracic disease 2015, 7(12):E633–E636. 10.3978/j.issn.2072-1439.2015.12.28
    1. Drewry AM, Hotchkiss RS: Counterpoint: Should antipyretic therapy be given routinely to febrile patients in septic shock? No. Chest 2013, 144(4):1098–1101. 10.1378/chest.13-0918
    1. Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, et al.: Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. Intensive Care Med 2015, 41(5):823–832. 10.1007/s00134-015-3676-6
    1. Young PJ, Saxena M, Beasley R, Bellomo R, Bailey M, Pilcher D, et al.: Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med 2012.
    1. Berman JD, Neva FA: Effect of temperature on multiplication of Leishmania amastigotes within human monocyte-derived macrophages in vitro. Am J Trop Med Hyg 1981, 30(2):318–321. 10.4269/ajtmh.1981.30.318
    1. Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee C-T, Capitano M, et al.: Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. Journal of Leukocyte Biology 2011, 90(5):951–962. 10.1189/jlb.0511229
    1. Chu CM, Tian SF, Ren GF, Zhang YM, Zhang LX, Liu GQ: Occurrence of temperature-sensitive influenza A viruses in nature. J Virol 1982, 41(2):353–359. 10.1128/JVI.41.2.353-359.1982
    1. Moench LM: A Study of the Heat Sensitivity of the Meningoeoecus in Vitro within the Range of Therapeutic Temperatures. Journal of Laboratory and Clinical Medicine 1937, 22:665–676.
    1. Small PM, Tauber MG, Hackbarth CJ, Sande MA: Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits. Infection and immunity 1986, 52(2):484–487. 10.1128/IAI.52.2.484-487.1986
    1. Mackowiak PA, Ruderman AE, Martin RM, Many WJ, Smith JW, Luby JP: Effects of physiologic variations in temperature on the rate of antibiotic-induced bacterial killing. American journal of clinical pathology 1981, 76(1):57–62. 10.1093/ajcp/76.1.57
    1. Launey Y, Nesseler N, Mallédant Y, Seguin P: Clinical review: fever in septic ICU patients—friend or foe? Critical care (London, England) 2011, 15(3):222–222. 10.1186/cc10097
    1. Doran TF, De Angelis C, Baumgardner RA, Mellits ED: Acetaminophen: more harm than good for chickenpox? J Pediatr 1989, 114(6):1045–1048. 10.1016/s0022-3476(89)80461-5
    1. Brandts CH, Ndjave M, Graninger W, Kremsner PG: Effect of paracetamol on parasite clearance time in Plasmodium falciparum malaria. Lancet 1997, 350(9079):704–709. 10.1016/S0140-6736(97)02255-1
    1. Stanley ED, Jackson GG, Panusarn C, Rubenis M, Dirda V: Increased virus shedding with aspirin treatment of rhinovirus infection. Jama 1975, 231(12):1248–1251.
    1. Peters MJ, Woolfall K, Khan I, Deja E, Mouncey PR, Wulff J, et al.: Permissive versus restrictive temperature thresholds in critically ill children with fever and infection: a multicentre randomized clinical pilot trial. Critical care (London, England) 2019, 23(1):69–69. 10.1186/s13054-019-2354-4
    1. Evans SS, Repasky EA, Fisher DT: Fever and the thermal regulation of immunity: the immune system feels the heat. Nature reviews Immunology 2015, 15(6):335–349. 10.1038/nri3843
    1. Lee CT, Zhong L, Mace TA, EA Repasky: Elevation in body temperature to fever range enhances and prolongs subsequent responsiveness of macrophages to endotoxin challenge. PLoS One 2012, 7(1):e30077 10.1371/journal.pone.0030077
    1. Schulman CI, Namias N, Doherty J, Manning RJ, Li P, Elhaddad A, et al.: The effect of antipyretic therapy upon outcomes in critically ill patients: a randomized, prospective study. Surg Infect (Larchmt) 2005, 6(4):369–375. 10.1089/sur.2005.6.369
    1. Gozzoli V, Schottker P, Suter PM, Ricou B: Is it worth treating fever in intensive care unit patients? Preliminary results from a randomized trial of the effect of external cooling. Arch Intern Med 2001, 161(1):121–123. 10.1001/archinte.161.1.121
    1. Young P, Saxena M, Bellomo R, Freebairn R, Hammond N, van Haren F, et al.: Acetaminophen for Fever in Critically Ill Patients with Suspected Infection. New England Journal of Medicine 2015, 373(23):2215–2224. 10.1056/NEJMoa1508375
    1. Zhang Z: Antipyretic therapy in critically ill patients with established sepsis: a trial sequential analysis. PLoS One 2015, 10(2):e0117279 10.1371/journal.pone.0117279
    1. Dallimore J, Ebmeier S, Thayabaran D, Bellomo R, Bernard G, Schortgen F, et al.: Effect of active temperature management on mortality in intensive care unit patients. Crit Care Resusc 2018, 20(2):150–163.
    1. Drewry AM, Ablordeppey EA, Murray ET, Stoll CRT, Izadi SR, Dalton CM, et al.: Antipyretic Therapy in Critically Ill Septic Patients: A Systematic Review and Meta-Analysis. Critical care medicine 2017, 45(5):806–813. 10.1097/CCM.0000000000002285
    1. Young PJ, Bellomo R, Bernard GR, Niven DJ, Schortgen F, Saxena M, et al.: Fever control in critically ill adults. An individual patient data meta-analysis of randomised controlled trials. Intensive Care Med 2019, 45(4):468–476. 10.1007/s00134-019-05553-w
    1. Itenov TS, Johansen ME, Bestle M, Thormar K, Hein L, Gyldensted L, et al.: Induced hypothermia in patients with septic shock and respiratory failure (CASS): a randomised, controlled, open-label trial. The Lancet Respiratory medicine 2018, 6(3):183–192. 10.1016/S2213-2600(18)30004-3
    1. Saoraya J, Musikatavorn K, Puttaphaisan P, Komindr A, Srisawat N: Intensive fever control using a therapeutic normothermia protocol in patients with febrile early septic shock: A randomized feasibility trial and exploration of the immunomodulatory effects. SAGE Open Medicine 2020, 8:2050312120928732. 10.1177/2050312120928732
    1. Lin C, Zhang Y, Zhang K, Zheng Y, Lu L, Chang H, et al.: Fever Promotes T Lymphocyte Trafficking via a Thermal Sensory Pathway Involving Heat Shock Protein 90 and alpha4 Integrins. Immunity 2019, 50(1):137–151.e136. 10.1016/j.immuni.2018.11.013
    1. Evans EM, Doctor RJ, Gage BF, Hotchkiss RS, Fuller BM, Drewry AM: The Association of Fever and Antipyretic Medication With Outcomes in Mechanically Ventilated Patients: A Cohort Study. Shock 2019, 52(2):152–159. 10.1097/SHK.0000000000001368
    1. Drewry AM, Ablordeppey EA, Murray ET, Dalton CM, Fuller BM, Kollef MH, et al.: Monocyte Function and Clinical Outcomes in Febrile and Afebrile Patients With Severe Sepsis. Shock 2018, 50(4):381–387. 10.1097/SHK.0000000000001083
    1. Raju TN: Hot brains: manipulating body heat to save the brain. Pediatrics 2006, 117(2):e320–321. 10.1542/peds.2005-1934
    1. Epstein NN: Artificial Fever as a Therapeutic Procedure. Cal West Med 1936, 44(5):357–358.
    1. Davis T: NICE guideline: feverish illness in children—assessment and initial management in children younger than 5 years. Archives of disease in childhood Education and practice edition 2013, 98(6):232–235. 10.1136/archdischild-2013-304792
    1. van der Zee J: Heating the patient: a promising approach? Annals of Oncology 2002, 13(8):1173–1184. 10.1093/annonc/mdf280
    1. Bull JMC: Clinical Practice of Whole-Body Hyperthermia: New Directions In: Thermoradiotherapy and Thermochemotherapy. Medical Radiology (Diagnostic Imaging and Radiation Oncology). Berlin, Heidelberg: Springer; 1996.
    1. Westermann AM, Grosen EA, Katschinski DM, Jäger D, Rietbroek R, Schink JC, et al.: A pilot study of whole body hyperthermia and carboplatin in platinum-resistant ovarian cancer. European Journal of Cancer 2001, 37(9):1111–1117. 10.1016/s0959-8049(01)00074-0
    1. Robins HI, Dennis WH, Neville AJ, Shecterle LM, Martin PA, Grossman J, et al.: A nontoxic system for 41.8 degrees C whole-body hyperthermia: results of a Phase I study using a radiant heat device. Cancer research 1985, 45(8):3937–3944.
    1. Shi H, Cao T, Connolly JE, Monnet L, Bennett L, Chapel S, et al.: Hyperthermia Enhances CTL Cross-Priming. The Journal of Immunology 2006, 176(4):2134–2141. 10.4049/jimmunol.176.4.2134
    1. Basu S, Srivastava PK: Fever‐like temperature induces maturation of dendritic cells through induction of hsp90. International Immunology 2003, 15(9):1053–1061. 10.1093/intimm/dxg104
    1. Tsan M-F, Gao B: Heat shock proteins and immune system. Journal of Leukocyte Biology 2009, 85(6):905–910. 10.1189/jlb.0109005
    1. Foxman EF, Storer JA, Fitzgerald ME, Wasik BR, Hou L, Zhao H, et al.: Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proceedings of the National Academy of Sciences 2015, 112(3):827–832. 10.1073/pnas.1411030112
    1. Ping CK: Rapid response to: Graphic Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region: case report. BMJ 2003, 326(850).
    1. Laporte M, Stevaert A, Raeymaekers V, Boogaerts T, Nehlmeier I, Chiu W, et al.: Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways. Journal of Virology 2019, 94(1):e01430–01419. 10.1128/JVI.01430-19
    1. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al.: SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 2020, 382(12):1177–1179. 10.1056/NEJMc2001737
    1. Chan KH, Peiris JS, Lam SY, Poon LL, Yuen KY, Seto WH: The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in virology 2011, 2011:734690 10.1155/2011/734690
    1. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. New England Journal of Medicine 2020.
    1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al.: Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020. 10.1001/jama.2020.3786
    1. He J, Tao H, Yan Y, Huang S-Y, Xiao Y: Molecular mechanism of evolution and human infection with the novel coronavirus (2019-nCoV). bioRxiv 2020:2020.2002.2017.952903. 10.3390/v12040428
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al.: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020, 395(10229):1054–1062. 10.1016/S0140-6736(20)30566-3
    1. Liu Y, Yan L-M, Wan L, Xiang T-X, Le A, Liu J-M, et al.: Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases. 10.1016/S1473-3099(20)30232-2
    1. Williams TGS, Snell LB, Taj U, Douthwaite ST: The role of lower respiratory tract samples in the diagnosis of COVID-19. Infectious Diseases 2020, 52(7):524–525. 10.1080/23744235.2020.1761999
    1. Yu F, Yan L, Wang N, Yang S, Wang L, Tang Y, et al.: Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clinical Infectious Diseases 2020, 71(15):793–798. 10.1093/cid/ciaa345
    1. Goury A, Poirson F, Chaput U, Voicu S, Garcon P, Beeken T, et al.: Targeted Temperature Management Using The "Esophageal Cooling Device" After Cardiac Arrest (The COOL Study): A feasibility and safety study. Resuscitation 2017, 121:54–61. 10.1016/j.resuscitation.2017.09.021
    1. Hegazy AF, Lapierre DM, Butler R, Martin J, Althenayan E: The esophageal cooling device: A new temperature control tool in the intensivist's arsenal. Heart & Lung: The Journal of Acute and Critical Care 2017, 46(3):143–148. 10.1016/j.hrtlng.2017.03.001
    1. Markota A, Fluher J, Kit B, Balazic P, Sinkovic A: The introduction of an esophageal heat transfer device into a therapeutic hypothermia protocol: A prospective evaluation. Am J Emerg Med 2016, 34(4):741–745. 10.1016/j.ajem.2016.01.028
    1. Khan I, Haymore J, Barnaba B, Armahizer M, Melinosky C, Bautista MA, et al.: Esophageal Cooling Device Versus Other Temperature Modulation Devices for Therapeutic Normothermia in Subarachnoid and Intracranial Hemorrhage. Ther Hypothermia Temp Manag 2018, 8(1):53–58. 10.1089/ther.2017.0033
    1. Williams D, Leslie G, Kyriazis D, O'Donovan B, Bowes J, Dingley J: Use of an Esophageal Heat Exchanger to Maintain Core Temperature during Burn Excisions and to Attenuate Pyrexia on the Burns Intensive Care Unit. Case Reports in Anesthesiology 2016, 2016:6 10.1155/2016/7306341
    1. Kalasbail P, Makarova N, Garrett F, Sessler DI: Heating and Cooling Rates With an Esophageal Heat Exchange System. Anesth Analg 2018, 126(4):1190–1195. 10.1213/ANE.0000000000002691
    1. Bhatti F, Naiman M, Tsarev A, Kulstad E: Esophageal Temperature Management in Patients Suffering from Traumatic Brain Injury. Ther Hypothermia Temp Manag 2019. 10.1089/ther.2018.0034
    1. Martin KR, Naiman M, Espinoza M: Using Esophageal Temperature Management to Treat Severe Heat Stroke: A Case Report. J Neurosci Nurs 2019.
    1. Hegazy AF, Lapierre DM, Butler R, Althenayan E: Temperature control in critically ill patients with a novel esophageal cooling device: a case series. BMC anesthesiology 2015, 15:152 10.1186/s12871-015-0133-6
    1. Markota A, Košir AS, Balažič P, Živko I, Sinkovič A: A Novel Esophageal Heat Transfer Device for Temperature Management in an Adult Patient with Severe Meningitis. Journal of Emergency Medicine 2017, 52(1):e27–e28.

Source: PubMed

3
購読する