Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults

Lauren H Wyatt, Robert B Devlin, Ana G Rappold, Martin W Case, David Diaz-Sanchez, Lauren H Wyatt, Robert B Devlin, Ana G Rappold, Martin W Case, David Diaz-Sanchez

Abstract

Background: Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies.

Methods: To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 μg/m3, SD 6.5), and filtered air (mean: 2.1 μg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure.

Results: Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 μg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure.

Conclusions: This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard.

Clinical trial registration information: clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.

Keywords: Controlled exposure; Healthy human volunteers; Particulate matter air pollution; Systemic inflammatory effect.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Mean percent point change in lung function (95%CI): 1 h after exposure (Post) and approximately 20 h after exposure (Follow-up). Mean change is expressed per 37.8 μg/m3 of PM2.5, which corresponds to average concentrated PM2.5 exposure across subjects
Fig. 2
Fig. 2
Mean percent point change in systemic inflammation markers (95%CI): 1 h after exposure (Post) and approximately 20 h after exposure (Follow-up). Mean change is expressed per 37.8 μg/m3 of PM2.5, which corresponds to average concentrated PM2.5 exposure across subjects
Fig. 3
Fig. 3
Mean percent point change in HRV and cardiac repolarization measures (95%CI): 1 h after exposure (Post) and approximately 20 h after exposure (Follow-up). Mean change is expressed per 37.8 μg/m3 of PM2.5, which corresponds to average concentrated PM2.5 exposure across subjects
Fig. 4
Fig. 4
Mean percent point change in blood chemistry and lipids measures (95%CI): 1 h after exposure (Post) and approximately 20 h after exposure (Follow-up). Mean change is expressed per 37.8 μg/m3 of PM2.5, which corresponds to average concentrated PM2.5 exposure across subjects

References

    1. Brook RD, Rajagopalan S, Pope CA, 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–2378. doi: 10.1161/CIR.0b013e3181dbece1.
    1. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993;329(24):1753–1759. doi: 10.1056/NEJM199312093292401.
    1. Wang Y, Shi L, Lee M, Liu P, Di Q, Zanobetti A, et al. Long-term Exposure to PM2.5 and Mortality Among Older Adults in the Southeastern US. Epidemiology (Cambridge, Mass) 2017;28(2):207–214. doi: 10.1097/EDE.0000000000000614.
    1. Weichenthal S, Villeneuve PJ, Burnett RT, van Donkelaar A, Martin RV, Jones RR, et al. Long-term exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the agricultural health study cohort. Environ Health Perspect. 2014;122(6):609–615. doi: 10.1289/ehp.1307277.
    1. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet (London, England) 2017;389(10082):1907–1918. doi: 10.1016/S0140-6736(17)30505-6.
    1. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama. 2006;295(10):1127–1134. doi: 10.1001/jama.295.10.1127.
    1. Schwartz J, Dockery DW, Neas LM. Is Daily Mortality Associated Specifically with Fine Particles? J Air Waste Manag Assoc. 1996;46(10):927–939. doi: 10.1080/10473289.1996.10467528.
    1. Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med. 2009;179(12):1115–1120. doi: 10.1164/rccm.200808-1240OC.
    1. Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD, et al. Association of Short-term Exposure to air pollution with mortality in older AdultsAssociation of short-term exposure to air pollution with mortality in older AdultsAssociation of short-term exposure to air pollution with mortality in older adults. JAMA. 2017;318(24):2446–2456. doi: 10.1001/jama.2017.17923.
    1. Krall JR, Anderson GB, Dominici F, Bell ML, Peng RD. Short-term exposure to particulate matter constituents and mortality in a national study of U.S. urban communities. Environ Health Perspect. 2013;121(10):1148–1153. doi: 10.1289/ehp.1206185.
    1. USEPA USEPA . Integrated science assessment (ISA) for particulate matter. 2009.
    1. Matt F, Cole-Hunter T, Donaire-Gonzalez D, Kubesch N, Martínez D, Carrasco-Turigas G, et al. Acute respiratory response to traffic-related air pollution during physical activity performance. Environ Int. 2016;97:45–55. doi: 10.1016/j.envint.2016.10.011.
    1. Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G, et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension. 2009;54(3):659–667. doi: 10.1161/HYPERTENSIONAHA.109.130237.
    1. Shah AP, Pietropaoli AP, Frasier LM, Speers DM, Chalupa DC, Delehanty JM, et al. Effect of inhaled carbon ultrafine particles on reactive hyperemia in healthy human subjects. Environ Health Perspect. 2008;116(3):375–380. doi: 10.1289/ehp.10323.
    1. Gong H, Linn WS, Terrell SL, Anderson KR, Clark KW, Sioutas C, et al. Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution. Inhal Toxicol. 2004;16(11–12):731–744. doi: 10.1080/08958370490499906.
    1. Breitner S, Peters A, Zareba W, Hampel R, Oakes D, Wiltshire J, et al. Ambient and controlled exposures to particulate air pollution and acute changes in heart rate variability and repolarization. Sci Rep. 2019;9(1):1946. doi: 10.1038/s41598-019-38531-9.
    1. Laeremans M, Dons E, Avila-Palencia I, Carrasco-Turigas G, Orjuela JP, Anaya E, et al. Short-term effects of physical activity, air pollution and their interaction on the cardiovascular and respiratory system. Environ Int. 2018;117:82–90. doi: 10.1016/j.envint.2018.04.040.
    1. Cole-Hunter T, Weichenthal S, Kubesch N, Foraster M, Carrasco-Turigas G, Bouso L, et al. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study. J Expo Sci Environ Epidemiol. 2016;26(2):133–140. doi: 10.1038/jes.2015.66.
    1. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–156. doi: 10.1016/S0735-1097(00)01054-8.
    1. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159(1):179–187. doi: 10.1164/ajrccm.159.1.9712108.
    1. Madden MC, Stevens T, Case M, Schmitt M, Diaz-Sanchez D, Bassett M, et al. Diesel exhaust modulates ozone-induced lung function decrements in healthy human volunteers. Part Fibre Toxicol. 2014;11:37. doi: 10.1186/s12989-014-0037-5.
    1. Tong H, Rappold AG, Diaz-Sanchez D, Steck SE, Berntsen J, Cascio WE, et al. Omega-3 fatty acid supplementation appears to attenuate particulate air pollution-induced cardiac effects and lipid changes in healthy middle-aged adults. Environ Health Perspect. 2012;120(7):952–957. doi: 10.1289/ehp.1104472.
    1. Devlin RB, Ghio AJ, Kehrl H, Sanders G, Cascio W. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J Suppl. 2003;40:76s–80s. doi: 10.1183/09031936.03.00402403.
    1. Samet JM, Rappold A, Graff D, Cascio WE, Berntsen JH, Huang YC, et al. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am J Respir Crit Care Med. 2009;179(11):1034–1042. doi: 10.1164/rccm.200807-1043OC.
    1. Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med. 2000;162(3 Pt 1):981–988. doi: 10.1164/ajrccm.162.3.9911115.
    1. Tong H, Rappold AG, Caughey M, Hinderliter AL, Graff DW, Berntsen JH, et al. Cardiovascular effects caused by increasing concentrations of diesel exhaust in middle-aged healthy GSTM1 null human volunteers. Inhal Toxicol. 2014;26(6):319–326. doi: 10.3109/08958378.2014.889257.
    1. R Core Team . A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.
    1. USEPA UEPA . Air quality system data Mart [internet database] 2018.
    1. Devlin RB, Smith CB, Schmitt MT, Rappold AG, Hinderliter A, Graff D, et al. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol Sci. 2014;140(1):61–72. doi: 10.1093/toxsci/kfu063.
    1. Ghio AJ, Soukup JM, Case M, Dailey LA, Richards J, Berntsen J, et al. Exposure to wood smoke particles produces inflammation in healthy volunteers. Occup Environ Med. 2012;69(3):170–175. doi: 10.1136/oem.2011.065276.
    1. Graff DW, Cascio WE, Rappold A, Zhou H, Huang YC, Devlin RB. Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults. Environ Health Perspect. 2009;117(7):1089–1094. doi: 10.1289/ehp.0900558.
    1. Holgate ST, Devlin RB, Wilson SJ, Frew AJ. Health effects of acute exposure to air pollution. Part II: Healthy subjects exposed to concentrated ambient particles. Res Rep Health Eff Inst. 2003;(112):31–50 discussion 1-67.
    1. Tong H, Rappold AG, Caughey M, Hinderliter AL, Bassett M, Montilla T, et al. Dietary supplementation with olive oil or fish oil and vascular effects of concentrated ambient particulate matter exposure in human volunteers. Environ Health Perspect. 2015;123(11):1173–1179. doi: 10.1289/ehp.1408988.
    1. Montiel-Davalos A, Alfaro-Moreno E, Lopez-Marure R. PM2.5 and PM10 induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal Toxicol. 2007;19(Suppl 1):91–98. doi: 10.1080/08958370701495212.
    1. Davel AP, Lemos M, Pastro LM, Pedro SC, de Andre PA, Hebeda C, et al. Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology. 2012;295(1–3):39–46. doi: 10.1016/j.tox.2012.02.004.
    1. Duan Z, Du FY, Yuan YD, Zhang YP, Yang HS, Pan WS. Effects of PM2.5 exposure on Klebsiella pneumoniae clearance in the lungs of rats. Zhonghua Jie He He Hu Xi Za Zhi. 2013;36(11):836–840.
    1. Riva DR, Magalhães CB, Lopes AA, Lanças T, Mauad T, Malm O, et al. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol. 2011;23(5):257–267. doi: 10.3109/08958378.2011.566290.
    1. Wang G, Zhen L, Lu P, Jiang R, Song W. Effects of ozone and fine particulate matter (PM2.5) on rat cardiac autonomic nervous system and systemic inflammation. Wei Sheng Yan Jiu. 2013;42(4):554–560.
    1. Hajat A, Allison M, Diez-Roux AV, Jenny NS, Jorgensen NW, Szpiro AA, et al. Long-term Exposure to Air Pollution and Markers of Inflammation, Coagulation, and Endothelial Activation A Repeat-measures Analysis in the Multi-Ethnic Study of Atherosclerosis (MESA) Epidemiology. 2015;26(3):310–320. doi: 10.1097/EDE.0000000000000267.
    1. Ghio AJ, Hall A, Bassett MA, Cascio WE, Devlin RB. Exposure to concentrated ambient air particles alters hematologic indices in humans. Inhal Toxicol. 2003;15(14):1465–1478. doi: 10.1080/08958370390249111.
    1. Jacobson Lda S, Hacon Sde S, Castro HA, Ignotti E, Artaxo P. Ponce de Leon AC. Association between fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon: a panel study. Environ Res. 2012;117:27–35. doi: 10.1016/j.envres.2012.05.006.
    1. Rice MB, Rifas-Shiman SL, Litonjua AA, Oken E, Gillman MW, Kloog I, et al. Lifetime exposure to ambient pollution and lung function in children. Am J Respir Crit Care Med 2016;193(8):881–8.
    1. Loftus C, Yost M, Sampson P, Arias G, Torres E, Vasquez VB, et al. Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environ Res. 2015;136:505–512. doi: 10.1016/j.envres.2014.10.030.
    1. Thaller EI, Petronella SA, Hochman D, Howard S, Chhikara RS, Brooks EG. Moderate increases in ambient PM2.5 and ozone are associated with lung function decreases in beach lifeguards. J Occup Environ Med. 2008;50(2):202–211. doi: 10.1097/JOM.0b013e31816386b4.
    1. Wu S, Deng F, Hao Y, Shima M, Wang X, Zheng C, et al. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the healthy volunteer natural relocation study. J Hazard Mater. 2013;260:183–191. doi: 10.1016/j.jhazmat.2013.05.018.
    1. Wu S, Deng F, Hao Y, Wang X, Zheng C, Lv H, et al. Fine particulate matter, temperature, and lung function in healthy adults: findings from the HVNR study. Chemosphere. 2014;108:168–174. doi: 10.1016/j.chemosphere.2014.01.032.
    1. Edginton S, O'Sullivan DE, King W, Lougheed MD. Effect of outdoor particulate air pollution on FEV1 in healthy adults: a systematic review and meta-analysis. Occup Environ Med. 2019.
    1. Wang H, Song L, Ju W, Wang X, Dong L, Zhang Y, et al. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice. Sci Rep. 2017;7(1):44256. doi: 10.1038/srep44256.
    1. Wang J, Huang J, Wang L, Chen C, Yang D, Jin M, et al. Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. J Thorac Dis. 2017;9(11):4398–4412. doi: 10.21037/jtd.2017.09.135.
    1. He F, Shaffer ML, Li X, Rodriguez-Colon S, Wolbrette DL, Williams R, et al. Individual-level PM2.5 exposure and the time course of impaired heart rate variability: the APACR study. J Expo Sci Environ Epidemiol. 2011;21(1):65–73. doi: 10.1038/jes.2010.21.
    1. Pope CA, 3rd, Hansen ML, Long RW, Nielsen KR, Eatough NL, Wilson WE, et al. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ Health Perspect. 2004;112(3):339–345. doi: 10.1289/ehp.6588.
    1. Tsai TY, Lo LW, Liu SH, Cheng WH, Chou YH, Lin WL, et al. Diurnal cardiac sympathetic hyperactivity after exposure to acute particulate matter 2.5 air pollution. J Electrocardiol. 2019;52:112–116. doi: 10.1016/j.jelectrocard.2018.11.012.
    1. Kohl HW., 3rd Physical activity and cardiovascular disease: evidence for a dose response. Med Sci Sports Exerc. 2001;33(6 Suppl):S472–S483. doi: 10.1097/00005768-200106001-00017.
    1. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–809. doi: 10.1503/cmaj.051351.
    1. Frampton MW, Utell MJ, Zareba W, Oberdörster G, Cox C, Huang LS, et al. Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep. 2004;126:1–47.
    1. DeFlorio-Barker S, Lobdell DT, Stone SL, Boehmer T, Rappazzo KM. Acute effects of short-term exposure to air pollution while being physically active, the potential for modification: a review of the literature. Prev Med. 2020;139:106195. doi: 10.1016/j.ypmed.2020.106195.
    1. Giles LV, Brandenburg JP, Carlsten C, Koehle MS. Physiological responses to diesel exhaust exposure are modified by cycling intensity. Med Sci Sports Exerc. 2014;46(10):1999–2006. doi: 10.1249/MSS.0000000000000309.
    1. Kubesch NJ, de Nazelle A, Westerdahl D, Martinez D, Carrasco-Turigas G, Bouso L, et al. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup Environ Med. 2015;72(4):284–293. doi: 10.1136/oemed-2014-102106.
    1. Giles LV, Carlsten C, Koehle MS. The pulmonary and autonomic effects of high-intensity and low-intensity exercise in diesel exhaust. Environ Health. 2018;17(1):87. doi: 10.1186/s12940-018-0434-6.
    1. Zareba W, Couderc JP, Oberdörster G, Chalupa D, Cox C, Huang LS, et al. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhal Toxicol. 2009;21(3):223–233. doi: 10.1080/08958370802492407.
    1. Gong H, Linn WS, Sioutas C, Terrell SL, Clark KW, Anderson KR, et al. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol. 2003;15(4):305–325. doi: 10.1080/08958370304455.
    1. Pietropaoli AP, Frampton MW, Hyde RW, Morrow PE, Oberdörster G, Cox C, et al. Pulmonary Function, Diffusing Capacity, and Inflammation in Healthy and Asthmatic Subjects Exposed to Ultrafine Particles. Inhal Toxicol. 2004;16(sup1):59–72. doi: 10.1080/08958370490443079.

Source: PubMed

3
購読する