Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography

Lewis J Macgregor, Angus M Hunter, Claudio Orizio, Malcolm M Fairweather, Massimiliano Ditroilo, Lewis J Macgregor, Angus M Hunter, Claudio Orizio, Malcolm M Fairweather, Massimiliano Ditroilo

Abstract

Skeletal muscle operates as a near-constant volume system; as such muscle shortening during contraction is transversely linked to radial deformation. Therefore, to assess contractile properties of skeletal muscle, radial displacement can be evoked and measured. Mechanomyography measures muscle radial displacement and during the last 20 years, tensiomyography has become the most commonly used and widely reported technique among the various methodologies of mechanomyography. Tensiomyography has been demonstrated to reliably measure peak radial displacement during evoked muscle twitch, as well as muscle twitch speed. A number of parameters can be extracted from the tensiomyography displacement/time curve and the most commonly used and reliable appear to be peak radial displacement and contraction time. The latter has been described as a valid non-invasive means of characterising skeletal muscle, based on fibre-type composition. Over recent years, applications of tensiomyography measurement within sport and exercise have appeared, with applications relating to injury, recovery and performance. Within the present review, we evaluate the perceived strengths and weaknesses of tensiomyography with regard to its efficacy within applied sports medicine settings. We also highlight future tensiomyography areas that require further investigation. Therefore, the purpose of this review is to critically examine the existing evidence surrounding tensiomyography as a tool within the field of sports medicine.

Conflict of interest statement

Funding

The preparation of this review was funded by the UK Sport and SportScotland Institute of Sport.

Conflict of interest

Lewis J. Macgregor, Angus M. Hunter, Claudio Orizio, Malcolm M. Fairweather and Massimiliano Ditroilo have no conflicts of interest directly relevant to the content of this review.

Figures

Fig. 1
Fig. 1
Typical incremental progression of displacement curves. The increase in curve magnitude is induced by an increase in stimulation amplitude (typically up to 60–100 mA). Peak displacement (Dm) is identified by a plateau in displacement curves, despite increased stimulation amplitude. Peak radial displacement signifies the absolute spatial transverse deformation of the muscle
Fig. 2
Fig. 2
Parameters extracted from a typical displacement curve; displacement (Dm), contraction time (Tc), delay time (Td), contraction velocity (Vc) [Vc = (90%Dm − 10%Dm)/Tc], sustain time (Ts) and half-relaxation time (Tr)

References

    1. Squire JM. Molecular mechanisms in muscular contraction. Trends Neurosci. 1983;6:409–413.
    1. Kardel T. The influence of Swammerdam. In: Kardel T, editor. Steno on muscles. Philadelphia (PA): American Philosophical Society; 1994. pp. 16–17.
    1. Baskin R, Paolini P. Volume change and pressure development in muscle during contraction. Am J Physiol. 1967;213(4):1025–1030.
    1. Yoshitake Y, Kawakami Y, Kanehisa H, Fukunaga T. Surface mechanomyogram reflects length changes in fascicles of human skeletal muscles. Int J Sport Health Sci. 2005;3(Special_Issue_2005):280–5.
    1. Yoshitake Y, Masani K, Shinohara M. Laser-detected lateral muscle displacement is correlated with force fluctuations during voluntary contractions in humans. J Neurosci Methods. 2008;173(2):271–278.
    1. Orizio C. Muscle fatigue monitored by the force, surface mechanomyogram and EMG. In: Nigg BM, MacIntosh BR, Mester J, editors. Biomechanics and biology of movement. Champaign, Illinois: Human Kinetics; 2000. pp. 409–33.
    1. Regina Dias Da Silva S, Neyroud D, Maffiuletti NA, Gondin J, Place N. Twitch potentiation induced by two different modalities of neuromuscular electrical stimulation: implications for motor unit recruitment. Muscle Nerve. 2015;51(3):412–418.
    1. Orizio C, Cogliati M, Bissolotti L, Diemont B, Gobbo M, Celichowski J. The age related slow and fast contributions to the overall changes in tibialis anterior contractile features disclosed by maximal single twitch scan. Arch Gerontol Geriatr. 2016;66:1–6.
    1. Mandrile F, Farina D, Pozzo M, Merletti R. Stimulation artifact in surface EMG signal: effect of the stimulation waveform, detection system, and current amplitude using hybrid stimulation technique. IEEE Trans Neural Syst Rehabil Eng. 2003;11(4):407–415.
    1. Barry D. Acoustic signals from frog skeletal muscle. Biophys J. 1987;51(5):769–73.
    1. Frangioni JV, Kwan-Gett TS, Dobrunz LE, McMahon TA. The mechanism of low-frequency sound production in muscle. Biophys J. 1987;51(5):775–783.
    1. Kaczmarek P, Celichowski J, Drzymała-Celichowska H, Kasiński A. The image of motor units architecture in the mechanomyographic signal during the single motor unit contraction: in vivo and simulation study. J Electromyogr Kinesiol. 2009;19(4):553–563.
    1. Bolton CF, Parkes A, Thompson TR, Clark MR, Sterne CJ. Recording sound from human skeletal muscle: technical and physiological aspects. Muscle Nerve. 1989;12(2):126–134.
    1. Barry D. Vibrations and sounds from evoked muscle twitches. Electromyogr Clin Neurophysiol. 1991;32(1–2):35–40.
    1. Petitjean M, Bellemare F. Phonomyogram of the diaphragm during unilateral and bilateral phrenic nerve stimulation and changes with fatigue. Muscle Nerve. 1994;17(10):1201–1209.
    1. Bichler E. Mechanomyograms recorded during evoked contractions of single motor units in the rat medial gastrocnemius muscle. Eur J Appl Physiol. 2000;83(4):310–319.
    1. Yoshitake Y, Shinohara M, Ue H, Moritani T. Characteristics of surface mechanomyogram are dependent on development of fusion of motor units in humans. J Appl Physiol. 2002;93(5):1744–1752.
    1. Marchetti M, Felici F, Bernardi M, Minasi P, Di Filippo L. Can evoked phonomyography be used to recognize fast and slow muscle in man? Int J Sports Med. 1992;13(1):65–68.
    1. Barry DT, Hill T, Im D. Muscle fatigue measured with evoked muscle vibrations. Muscle Nerve. 1992;15(3):303–309.
    1. Gobbo M, Ce E, Diemont B, Esposito F, Orizio C. Torque and surface mechanomyogram parallel reduction during fatiguing stimulation in human muscles. Eur J Appl Physiol. 2006;97(1):9–15.
    1. Shima N, Rice CL, Ota Y, Yabe K. The effect of postactivation potentiation on the mechanomyogram. Eur J Appl Physiol. 2006;96(1):17–23.
    1. Wilson HV, Johnson MI, Francis P. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by tensiomyography. PLoS One. 2018;13(2):e0191965.
    1. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol (1985). 2000;88(6):2131–7. 10.1152/jappl.2000.88.6.2131.
    1. Petrella RJ, Cunningham DA, Vandervoort AA, Paterson DH. Comparison of twitch potentiation in the gastrocnemius of young and elderly men. Eur J Appl Physiol Occup Physiol. 1989;58(4):395–399.
    1. Orizio C, Esposito F, Paganotti I, Marino L, Rossi B, Veicsteinas A. Electrically-elicited surface mechanomyogram in myotonic dystrophy. Ital J Neurol Sci. 1997;18(4):185–190.
    1. Ng AR, Arimura K, Akataki K, Mita K, Higuchi I, Osame M. Mechanomyographic determination of post-activation potentiation in myopathies. Clin Neurophysiol. 2006;117(1):232–239.
    1. Luciani L. Fisiologia dell’uomo. VI. Milano: Società Editrice Libraria; 1923.
    1. Margaria R, De Caro L. Fisiologia Umana. IV. Milano: Casa Editrice Vallardi- Società Editrice Libraria; 1977.
    1. Orizio C. Surface mechanomyogram. In: Merletti R, Parker P, editors. Electromyography: physiology, engineering and noninvasive applications. Hoboken, NJ: Wiley; 2004. pp. 305–19.
    1. Madeleine P, Bajaj P, Søgaard K, Arendt-Nielsen L. Mechanomyography and electromyography force relationships during concentric, isometric and eccentric contractions. J Electromyogr Kinesiol. 2001;11(2):113–121.
    1. Madeleine P, Cescon C, Farina D. Spatial and force dependency of mechanomyographic signal features. J Neurosci Methods. 2006;158(1):89–99.
    1. Zagar T, Krizaj D. Validation of an accelerometer for determination of muscle belly radial displacement. Med Biol Eng Comput. 2005;43(1):78–84.
    1. Ibitoye MO, Hamzaid NA, Zuniga JM, Wahab AKA. Mechanomyography and muscle function assessment: a review of current state and prospects. Clin Biomech (Bristol, Avon) 2014;29(6):691–704.
    1. Burger H, Valenčič V, Marincek C, Kogovsek N. Properties of musculus gluteus maximus in above-knee amputees. Clin Biomech (Bristol, Avon) 1996;11(1):35–38.
    1. Valenčič V, Knez N. Measuring of skeletal muscles’ dynamic properties. Artif Organs. 1997;21(3):240–242.
    1. Dahmane R, Valenčič V, Knez N, Eržen I. Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med Biol Eng Comput. 2001;39(1):51–55.
    1. Seidl L, Tosovic D, Brown JM. Test-retest reliability and reproducibility of laser-vs contact-displacement sensors in mechanomyography: implications for musculoskeletal research. J Appl Biomech. 2016;33(2):130–136.
    1. Dahmane R, Djordjevic S, Šimunič B, Valencic V. Spatial fiber type distribution in normal human muscle Histochemical and tensiomyographical evaluation. J Biomech. 2005;38(12):2451–2459.
    1. Dahmane R, Djordjevic S, Smerdu V. Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods. Med Biol Eng Comput. 2006;44(11):999–1006.
    1. Kersevan K, Valenčič V, Djordjevic S, Šimunič B. The muscle adaptation process as a result of pathological changes or specific training procedures. Cell Mol Biol Lett. 2002;7(2):367–369.
    1. Krizaj D, Šimunič B, Zagar T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J Electromyogr Kinesiol. 2008;18(4):645–651.
    1. Valenčič V, Knez N, Šimunič B. Tensiomyography: detection of skeletal muscle response by means of radial muscle belly displacement. Biomed Eng. 2001;1:1–10.
    1. Pišot R, Narici MV, Šimunič B, De Boer M, Seynnes O, Jurdana M, et al. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur J Appl Physiol. 2008;104(2):409–414.
    1. Šimunič B, Degens H, Zavrsnik J, Koren K, Volmut T, Pišot R. Tensiomyographic assessment of muscle contractile properties in 9- to 14-year old children. Int J Sports Med. 2017;38(9):659–665.
    1. Zavrsnik J, Pisot R, Šimunič B, Kokol P, Blazun Vosner H. Biomechanical characteristics of skeletal muscles and associations between running speed and contraction time in 8- to 13-year-old children. J Int Med Res. 2017;45(1):231–245.
    1. García-Manso JM, Rodriguez-Ruiz D, Rodriguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG) J Sports Sci. 2011;29(6):619–625.
    1. Tous-Fajardo J, Moras G, Rodriguez-Jimenez S, Usach R, Doutres DM, Maffiuletti NA. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J Electromyogr Kinesiol. 2010;20(4):761–766.
    1. Macgregor LJ, Ditroilo M, Smith IJ, Fairweather MM, Hunter AM. Reduced radial displacement of the gastrocnemius medialis muscle after electrically elicited fatigue. J Sport Rehabil. 2016;25(3):241–247.
    1. Rodríguez-Ruiz D, García-Manso J, Rodríguez-Matoso D, Sarmiento S, da Silva-Grigoletto M, Pisot R. Effects of age and physical activity on response speed in knee flexor and extensor muscles. Eur Rev Aging Phys Act. 2013;10(2):127–132.
    1. Rodríguez-Ruiz D, Diez-Vega I, Rodriguez-Matoso D, Fernandez-del-Valle M, Sagastume R, Molina JJ. Analysis of the response speed of musculature of the knee in professional male and female volleyball players. Biomed Res Int. 2014;2014:239708.
    1. Loturco I, Pereira LA, Kobal R, Kitamura K, Ramírez-Campillo R, Zanetti V, et al. Muscle contraction velocity: a suitable approach to analyze the functional adaptations in elite soccer players. J Sports Sci Med. 2016;15(3):483.
    1. García-Manso JM, Rodriguez-Matoso D, Sarmiento S, de Saa Y, Vaamonde D, Rodriguez-Ruiz D, et al. Effect of high-load and high-volume resistance exercise on the tensiomyographic twitch response of biceps brachii. J Electromyogr Kinesiol. 2012;22(4):612–619.
    1. Rodríguez-Matoso D, Garcia-Manso J, Sarmiento S, de Saa Y, Vaamonde D, Rodriguez-Ruiz D, et al. Evaluacion de la respuesta muscular como herramienta de control en el campo de la actividad fisica, la salud y el deporte. Rev Andaluza Med Deporte. 2012;5(1):28–40.
    1. de Paula Simola RA, Harms N, Raeder C, Kellmann M, Meyer T, Pfeiffer M, et al. Assessment of neuromuscular function after different strength training protocols using tensiomyography. J Strength Cond Res. 2015;29(5):1339–1348.
    1. Ariano M, Edgerton V, Armstrong R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973;21(1):51–55.
    1. Šimunič B, Degens H, Rittweger J, Narici M, Mekjavic IB, Pišot R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med Sci Sports Exerc. 2011;43(9):1619–1625.
    1. Morgan D. From sarcomeres to whole muscles. J Exp Biol. 1985;115(1):69–78.
    1. Rodríguez-Matoso D, Rodríguez-Ruiz D, Sarmiento S, Vaamonde D, Da Silva-Grigoletto M, García-Manso J. Reproducibility of muscle response measurements using tensiomyography in a range of positions. Rev Andal Med Deporte. 2010;3(3):81–86.
    1. Šimunič B. Between-day reliability of a method for non-invasive estimation of muscle composition. J Electromyogr Kinesiol. 2012;22(4):527–530.
    1. Ditroilo M, Smith IJ, Fairweather MM, Hunter AM. Long-term stability of tensiomyography measured under different muscle conditions. J Electromyogr Kinesiol. 2013;23(3):558–563.
    1. Benítez Jiménez A, Fernández Roldán K, Montero Doblas J, Romacho Castro J. Reliability of tensiomyography (TMG) as a muscle assessment tool. Rev Int Med Cienc Act Fis Dep. 2013;13(52):647–656.
    1. García-García O, Cancela-Carral JM, Martinez-Trigo R, Serrano-Gomez V. Differences in the contractile properties of the knee extensor and flexor muscles in professional road cyclists during the season. J Strength Cond Res. 2013;27(10):2760–2767.
    1. García-García O, Cancela-Carral JM, Huelin-Trillo F. Neuromuscular profile of top-level women kayakers assessed through tensiomyography. J Strength Cond Res. 2015;29(3):844–853.
    1. Rodríguez-Ruiz D, Quiroga Escudero ME, Rodríguez Matoso D, Sarmiento Montesdeoca S, Losa Reyna J, Saá Guerra YD, et al. The tensiomyography used for evaluating high level beach volleyball players. Rev Bras Med Esporte. 2012;18(2):95–99.
    1. Pišot R, Šimunič B, Dolenc P. Physical inactivity effect on morphological and musculoskeletal changes. Acta Salus Vitae. 2016;4(1):34–49.
    1. Reeves ND, Maganaris CN, Ferretti G, Narici MV. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol. 2005;98(6):2278–2286.
    1. Šimunič B, Krizaj D, Narici M, Pišot R. Twitch parameters in transversal and longitudinal biceps brachii response. Ann Kinesiol. 2010;1:61–80.
    1. Koren K, Šimunič B, Rejc E, Lazzer S, Pišot R. Differences between skeletal muscle contractile parameters estimated from transversal tensiomyographic and longitudinal torque twitch response. Kineziologija. 2015;47(1):19–26.
    1. de Paula Simola RÁ, Raeder C, Wiewelhove T, Kellmann M, Meyer T, Pfeiffer M, et al. Muscle mechanical properties of strength and endurance athletes and changes after one week of intensive training. J Electromyogr Kinesiol. 2016;30:73–80.
    1. Wiewelhove T, Raeder C, Meyer T, Kellmann M, Pfeiffer M, Ferrauti A. Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PLoS One. 2015;10(10):e0139801.
    1. Olbrecht J. The science of winning: planning, periodizing and optimizing swim training. Tienen: F&G Partners; 2015.
    1. Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(2):139–147.
    1. Loturco I, Gil S, de Souza Laurino CF, Roschel H, Kobal R, Cal Abad CC, et al. Differences in muscle mechanical properties between elite power and endurance athletes: a comparative study. J Strength Cond Res. 2015;29(6):1723–1728.
    1. Alvarez-Diaz P, Alentorn-Geli E, Ramon S, Marin M, Steinbacher G, Rius M, et al. Effects of anterior cruciate ligament reconstruction on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3407–3413.
    1. Alentorn-Geli E, Alvarez-Diaz P, Ramon S, Marin M, Steinbacher G, Boffa JJ, et al. Assessment of neuromuscular risk factors for anterior cruciate ligament injury through tensiomyography in male soccer players. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2508–2513.
    1. Alentorn-Geli E, Alvarez-Diaz P, Ramon S, Marin M, Steinbacher G, Rius M, et al. Assessment of gastrocnemius tensiomyographic neuromuscular characteristics as risk factors for anterior cruciate ligament injury in male soccer players. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2502–2507.
    1. Rusu LD, Cosma GG, Cernaianu SM, Marin MN, Rusu PF, Ciocanescu DP, et al. Tensiomyography method used for neuromuscular assessment of muscle training. J Neuroeng Rehabil. 2013;10:67.
    1. Dias PS, Fort JS, Marinho DA, Santos A, Marques MC. Tensiomyography in physical rehabilitation of high level athletes. Open Sports Sci J. 2010;3:47–48.
    1. García-García O, Serrano-Gomez V, Hernandez-Mendo A, Tapia-Flores A. Assessment of the in-season changes in mechanical and neuromuscular characteristics in professional soccer players. J Sports Med Phys Fitness. 2016;56(6):714–723.
    1. Gil S, Loturco I, Tricoli V, Ugrinowitsch C, Kobal R, Cal Abad CC, et al. Tensiomyography parameters and jumping and sprinting performance in Brazilian elite soccer players. Sports Biomech. 2015;14(3):340–350.
    1. García-García O. The relationship between parameters of tensiomyography and potential performance indicators in professional cyclists. Rev Int Med Cienc Act Fís Deporte. 2013;13(52):771–781.
    1. Giovanelli N, Taboga P, Rejc E, Šimunič B, Antonutto G, Lazzer S. Effects of an uphill marathon on running mechanics and lower-limb muscle fatigue. Int J Sports Physiol Perform. 2016;11(4):522–529.
    1. Raeder C, Wiewelhove T, De Paula Simola RA, Kellmann M, Meyer T, Pfeiffer M, et al. Assessment of fatigue and recovery in male and female athletes following six days of intensified strength training. J Strength Cond Res. 2016;30(12):3412–3427.
    1. Carrasco L, Sanudo B, de Hoyo M, Pradas F, Da Silva ME. Effectiveness of low-frequency vibration recovery method on blood lactate removal, muscle contractile properties and on time to exhaustion during cycling at VO(2)max power output. Eur J Appl Physiol. 2011;111(9):2271–2279.
    1. Brody L, Pollock MT, Roy SH, De Luca C, Celli B. pH-induced effects on median frequency and conduction velocity of the myoelectric signal. J Appl Physiol. 1991;71(5):1878–1885.
    1. Wiewelhove T, Raeder C, de Paula Simola RA, Schneider C, Doweling A, Ferrauti A. Tensiomyographic markers are not sensitive for monitoring muscle fatigue in elite youth athletes: a pilot study. Front Physiol. 2017;8:406.
    1. Vanezis A, Lees A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics. 2005;48(11–14):1594–1603.
    1. Morin J, Tomazin K, Edouard P, Millet G. Changes in running mechanics and spring–mass behavior induced by a mountain ultra-marathon race. J Biomech. 2011;44(6):1104–1107.
    1. Hunter AM, Galloway SD, Smith IJ, Tallent J, Ditroilo M, Fairweather MM, et al. Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. J Electromyogr Kinesiol. 2012;22(3):334–341.
    1. Reilly T, Ekblom B. The use of recovery methods post-exercise. J Sports Sci. 2005;23(6):619–627.
    1. Dadebo B, White J, George KP. A survey of flexibility training protocols and hamstring strains in professional football clubs in England. Br J Sports Med. 2004;38(4):388–394.
    1. Rey E, Lago-Penas C, Lago-Ballesteros J, Casais L. The effect of recovery strategies on contractile properties using tensiomyography and perceived muscle soreness in professional soccer players. J Strength Cond Res. 2012;26(11):3081–3088.
    1. Murray AM, Jones TW, Horobeanu C, Turner AP, Sproule J. Sixty seconds of foam rolling does not affect functional flexibility or change muscle temperature in adolescent athletes. Int J Sports Phys Ther. 2016;11(5):765–776.
    1. García-Manso JM, Rodriguez-Matoso D, Rodriguez-Ruiz D, Sarmiento S, de Saa Y, Calderon J. Effect of cold-water immersion on skeletal muscle contractile properties in soccer players. Am J Phys Med Rehabil. 2011;90(5):356–363.
    1. Zubac D, Šimunič B. Skeletal muscle contraction time and tone decrease after 8 weeks of plyometric training. J Strength Cond Res. 2017;31(6):1610–1619.
    1. Whitehead NP, Weerakkody N, Gregory J, Morgan D, Proske U. Changes in passive tension of muscle in humans and animals after eccentric exercise. J Physiol. 2001;533(2):593–604.
    1. Evetovich TK, Housh TJ, Stout JR, Johnson GO, Smith DB, Ebersole KT. Mechanomyographic responses to concentric isokinetic muscle contractions. Eur J Appl Physiol Occup Physiol. 1997;75(2):166–169.
    1. Ditroilo M, Hunter AM, Haslam S, De Vito G. The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiol Meas. 2011;32(8):1315–1326.
    1. Calvo S, Quintero I, Herrero P. Effects of dry needling (DNHS technique) on the contractile properties of spastic muscles in a patient with stroke: a case report. Int J Rehabil Res. 2016;39(4):372–376.
    1. Croisier J-L, Forthomme B, Namurois M-H, Vanderthommen M, Crielaard J-M. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med. 2002;30(2):199–203.
    1. Bailey C, Sato K, Alexander R, Chiang C-Y, Stone MH. Isometric force production symmetry and jumping performance in collegiate athletes. J Trainol. 2013;2(1):1–5.
    1. Sugiyama T, Kameda M, Kageyama M, Kiba K, Kanehisa H, Maeda A. Asymmetry between the dominant and non-dominant legs in the kinematics of the lower extremities during a running single leg jump in collegiate basketball players. J Sports Sci Med. 2014;13(4):951.
    1. Croisier J-L, Ganteaume S, Binet J, Genty M, Ferret J-M. Strength imbalances and prevention of hamstring injury in professional soccer players a prospective study. Am J Sports Med. 2008;36(8):1469–1475.
    1. Menzel H-J, Chagas MH, Szmuchrowski LA, Araujo SR, de Andrade AG, de Jesus-Moraleida FR. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. J Strength Cond Res. 2013;27(5):1370–1377.
    1. Trivers R, Fink B, Russell M, McCarty K, James B, Palestis BG. Lower body symmetry and running performance in elite Jamaican track and field athletes. PLoS One. 2014;9(11):e113106.
    1. Wilk KE, Reinold MM, Hooks TR. Recent advances in the rehabilitation of isolated and combined anterior cruciate ligament injuries. Orthop Clin North Am. 2003;34(1):107–137.
    1. Maeda N, Urabe Y, Tsutsumi S, Fujishita H, Numano S, Takeuchi T, et al. Symmetry tensiomyographic neuromuscular response after chronic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc. 2017;26(2):411–417.
    1. García-García O, Serrano-Gómez V, Hernández-Mendo A, Morales-Sánchez V. Baseline mechanical and neuromuscular profile of knee extensor and flexor muscles in professional soccer players at the start of the pre-season. J Hum Kinet. 2017;58(1):23–34.

Source: PubMed

3
購読する