The OPTIMIZE study: protocol of a pragmatic sequential multiple assessment randomized trial of nonpharmacologic treatment for chronic, nonspecific low back pain

Richard L Skolasky, Stephen T Wegener, Rachel V Aaron, Patti Ephraim, Gerard Brennan, Tom Greene, Elizabeth Lane, Kate Minick, Adam W Hanley, Eric L Garland, Julie M Fritz, Richard L Skolasky, Stephen T Wegener, Rachel V Aaron, Patti Ephraim, Gerard Brennan, Tom Greene, Elizabeth Lane, Kate Minick, Adam W Hanley, Eric L Garland, Julie M Fritz

Abstract

Background: Low back pain is a prevalent condition that causes a substantial health burden. Despite intensive and expensive clinical efforts, its prevalence is growing. Nonpharmacologic treatments are effective at improving pain-related outcomes; however, treatment effect sizes are often modest. Physical therapy (PT) and cognitive behavioral therapy (CBT) have the most consistent evidence of effectiveness. Growing evidence also supports mindfulness-based approaches. Discussions with providers and patients highlight the importance of discussing and trying options to find the treatment that works for them and determining what to do when initial treatment is not successful. Herein, we present the protocol for a study that will evaluate evidence-based, protocol-driven treatments using PT, CBT, or mindfulness to examine comparative effectiveness and optimal sequencing for patients with chronic low back pain.

Methods: The Optimized Multidisciplinary Treatment Programs for Nonspecific Chronic Low Back Pain (OPTIMIZE) Study will be a multisite, comparative effectiveness trial using a sequential multiple assessment randomized trial design enrolling 945 individuals with chronic low back pain. The co-primary outcomes will be disability (measured using the Oswestry Disability Index) and pain intensity (measured using the Numerical Pain Rating Scale). After baseline assessment, participants will be randomly assigned to PT or CBT. At week 10, participants who have not experienced at least 50% improvement in disability will be randomized to cross-over phase-1 treatments (e.g., PT to CBT) or to Mindfulness-Oriented Recovery Enhancement (MORE). Treatment will consist of 8 weekly sessions. Long-term outcome assessments will be performed at weeks 26 and 52.

Discussion: Results of this study may inform referring providers and patients about the most effective nonoperative treatment and/or sequence of nonoperative treatments to treat chronic low back pain.

Trial registration: This study was prospectively registered on March 1, 2019, with Clinicaltrials.gov under the registration number NCT03859713 (https://ichgcp.net/clinical-trials-registry/NCT03859713).

Keywords: Cognitive behavioral therapy; Comparative effectiveness research; Low back pain; Mindfulness; Physical therapy.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Intervention and assessment flow diagram for the OPTIMIZE Study, a sequential multiple assessment randomized trial. [Figure reprinted with permission.] CBT, cognitive behavioral therapy; MORE, Mindfulness-Oriented Recovery Enhancement; PT, physical therapy; R, randomize
Fig. 2
Fig. 2
PRagmatic-Explanatory Continuum Indicator Summary-2 scoring wheel for the OPTIMIZE Study. Visual representation of pragmatism of the trial on the explanatory-pragmatic continuum. Scores of 1 to 5 on each spoke of the wheel indicate how pragmatic or explanatory the clinical trial is: 1, very explanatory; 2, rather explanatory; 3, equally pragmatic/explanatory; 4, rather pragmatic; and 5, very pragmatic. [Figure adapted with permission from Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M: The PRECIS-2 tool: designing trials that are fit for purpose. BMJ (Clinical research ed) 2015, 350:h2147]

References

    1. Deyo RA, Mirza SK, Martin BI. Back pain prevalence and visit rates: estimates from U.S. national surveys, 2002. Spine. 2006;31(23):2724–2727. doi: 10.1097/.
    1. Hart LG, Deyo RA, Cherkin DC. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a U.S. national survey. Spine. 1995;20(1):11–19. doi: 10.1097/00007632-199501000-00003.
    1. Licciardone JC. The epidemiology and medical management of low back pain during ambulatory medical care visits in the United States. Osteopath Med Primary Care. 2008;2:11. doi: 10.1186/1750-4732-2-11.
    1. Dieleman JL, Baral R, Birger M, Bui AL, Bulchis A, Chapin A, Hamavid H, Horst C, Johnson EK, Joseph J, et al. US spending on personal health care and public health, 1996-2013. JAMA. 2016;316(24):2627–2646. doi: 10.1001/jama.2016.16885.
    1. Smith M, Davis MA, Stano M, Whedon JM. Aging baby boomers and the rising cost of chronic back pain: secular trend analysis of longitudinal medical expenditures panel survey data for years 2000 to 2007. J Manip Physiol Ther. 2013;36(1):2–11. doi: 10.1016/j.jmpt.2012.12.001.
    1. Krebs EE, Gravely A, Nugent S, Jensen AC, DeRonne B, Goldsmith ES, Kroenke K, Bair MJ, Noorbaloochi S. Effect of opioid vs nonopioid medications on pain-related function in patients with chronic Back pain or hip or knee osteoarthritis pain: the SPACE randomized clinical trial. JAMA. 2018;319(9):872–882. doi: 10.1001/jama.2018.0899.
    1. Costa Lda C, Maher CG, Hancock MJ, JH MA, Herbert RD, Costa LO. The prognosis of acute and persistent low-back pain: a meta-analysis. CMAJ. 2012;184(11):E613–E624. doi: 10.1503/cmaj.111271.
    1. Costa Lda C, Maher CG, McAuley JH, Hancock MJ, Herbert RD, Refshauge KM, Henschke N. Prognosis for patients with chronic low back pain: inception cohort study. BMJ. 2009;339:b3829. doi: 10.1136/bmj.b3829.
    1. Chou R, Deyo R, Friedly J, et al. Noninvasive Treatments for Low Back Pain [Internet]. Rockville: Agency for Healthcare Research and Quality (US); 2016. (Comparative Effectiveness Reviews, No. 169.). Available from: .
    1. Edwards RR, Dworkin RH, Turk DC, Angst MS, Dionne R, Freeman R, Hansson P, Haroutounian S, Arendt-Nielsen L, Attal N, et al. Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations. Pain. 2016;157(9):1851–1871. doi: 10.1097/j.pain.0000000000000602.
    1. Huijnen IP, Rusu AC, Scholich S, Meloto CB, Diatchenko L. Subgrouping of low back pain patients for targeting treatments: evidence from genetic, psychological, and activity-related behavioral approaches. Clin J Pain. 2015;31(2):123–132. doi: 10.1097/AJP.0000000000000100.
    1. Chou R, Deyo R, Friedly J, Skelly A, Hashimoto R, Weimer M, Fu R, Dana T, Kraegel P, Griffin J, et al. Nonpharmacologic therapies for low Back pain: a systematic review for an American College of Physicians Clinical Practice Guideline. Ann Intern Med. 2017;166(7):493–505. doi: 10.7326/M16-2459.
    1. Bhatt DL, Mehta C. Adaptive designs for clinical trials. N Engl J Med. 2016;375(1):65–74. doi: 10.1056/NEJMra1510061.
    1. Foster NE, Anema JR, Cherkin D, Chou R, Cohen SP, Gross DP, Ferreira PH, Fritz JM, Koes BW, Peul W, et al. Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet (London, England) 2018;391(10137):2368–2383. doi: 10.1016/S0140-6736(18)30489-6.
    1. Murphy SA. An experimental design for the development of adaptive treatment strategies. Stat Med. 2005;24(10):1455–1481. doi: 10.1002/sim.2022.
    1. Almirall D, Nahum-Shani I, Sherwood NE, Murphy SA. Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research. Transl Behav Med. 2014;4(3):260–274. doi: 10.1007/s13142-014-0265-0.
    1. Ivanova JI, Birnbaum HG, Schiller M, Kantor E, Johnstone BM, Swindle RW. Real-world practice patterns, health-care utilization, and costs in patients with low back pain: the long road to guideline-concordant care. Spine J. 2011;11(7):622–632. doi: 10.1016/j.spinee.2011.03.017.
    1. Salt E, Gokun Y, Rankin Kerr A, Talbert J. A description and comparison of treatments for low Back pain in the United States. Orthop Nurs. 2016;35(4):214–221. doi: 10.1097/NOR.0000000000000258.
    1. Chou R, Huffman LH. Nonpharmacologic therapies for acute and chronic low back pain: a review of the evidence for an American pain society/American College of Physicians clinical practice guideline. Ann Intern Med. 2007;147(7):492–504. doi: 10.7326/0003-4819-147-7-200710020-00007.
    1. Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ. 2015;350:h2147. doi: 10.1136/bmj.h2147.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Fritz JM, Irrgang JJ. A comparison of a modified Oswestry low Back pain disability questionnaire and the Quebec Back pain disability scale. Phys Ther. 2001;81(2):776–788. doi: 10.1093/ptj/81.2.776.
    1. Childs JD, Piva SR, Fritz JM. Responsiveness of the numeric pain rating scale in patients with low back pain. Spine. 2005;30(11):1331–1334. doi: 10.1097/01.brs.0000164099.92112.29.
    1. Fritz JM, Hebert J, Koppenhaver S, Parent E. Beyond minimally important change: defining a successful outcome of physical therapy for patients with low back pain. Spine. 2009;34(25):2803–2809. doi: 10.1097/BRS.0b013e3181ae2bd4.
    1. Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, Amtmann D, Bode R, Buysse D, Choi S, et al. The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J Clin Epidemiol. 2010;63(11):1179–1194. doi: 10.1016/j.jclinepi.2010.04.011.
    1. Von Korff M, Saunders K, Thomas Ray G, Boudreau D, Campbell C, Merrill J, Sullivan MD, Rutter CM, Silverberg MJ, Banta-Green C, et al. De facto long-term opioid therapy for noncancer pain. Clin J Pain. 2008;24(6):521–527. doi: 10.1097/AJP.0b013e318169d03b.
    1. Cagnie B, Vinck E, Beernaert A, Cambier D. How common are side effects of spinal manipulation and can these side effects be predicted? Man Ther. 2004;9(3):151–156. doi: 10.1016/j.math.2004.03.001.
    1. Rozental A, Kottorp A, Boettcher J, Andersson G, Carlbring P. Negative effects of psychological treatments: an exploratory factor analysis of the negative effects questionnaire for monitoring and reporting adverse and unwanted events. PLoS One. 2016;11(6):e0157503. doi: 10.1371/journal.pone.0157503.
    1. Beneciuk JM, Fritz JM, George SZ. The STarT Back screening tool for prediction of 6-month clinical outcomes: relevance of change patterns in outpatient physical therapy settings. J Orthop Sports Phys Ther. 2014;44(9):656–664. doi: 10.2519/jospt.2014.5178.
    1. Beneciuk JM, Bishop MD, Fritz JM, Robinson ME, Asal NR, Nisenzon AN, George SZ. The STarT back screening tool and individual psychological measures: evaluation of prognostic capabilities for low back pain clinical outcomes in outpatient physical therapy settings. Phys Ther. 2013;93(3):321–333. doi: 10.2522/ptj.20120207.
    1. Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implementation Sci : IS. 2009;4:50. doi: 10.1186/1748-5908-4-50.
    1. Delitto A, George SZ, Van Dillen L, Whitman JM, Sowa G, Shekelle P, Denninger TR, Godges JJ. Low back pain. J Orthop Sports Phys Ther. 2012;42(4):A1–57. doi: 10.2519/jospt.2012.42.4.A1.
    1. Hill JC, Dunn KM, Lewis M, Mullis R, Main CJ, Foster NE, Hay EM. A primary care back pain screening tool: identifying patient subgroups for initial treatment. Arthritis Rheum. 2008;59(5):632–641. doi: 10.1002/art.23563.
    1. Thorn BE. Cognitive therapy for chronic pain: a step-by-step guide. New York: Guilford Press; 2004.
    1. Cherkin DC, Sherman KJ, Balderson BH, Cook AJ, Anderson ML, Hawkes RJ, Hansen KE, Turner JA. Effect of mindfulness-based stress reduction vs cognitive behavioral therapy or usual care on Back pain and functional limitations in adults with chronic low Back pain: a randomized clinical trial. JAMA. 2016;315(12):1240–1249. doi: 10.1001/jama.2016.2323.
    1. Lamb SE, Hansen Z, Lall R, Castelnuovo E, Withers EJ, Nichols V, Potter R, Underwood MR. Group cognitive behavioural treatment for low-back pain in primary care: a randomised controlled trial and cost-effectiveness analysis. Lancet (London, England) 2010;375(9718):916–923. doi: 10.1016/S0140-6736(09)62164-4.
    1. Cherkin DC, Sherman KJ, Balderson BH, Turner JA, Cook AJ, Stoelb B, Herman PM, Deyo RA, Hawkes RJ. Comparison of complementary and alternative medicine with conventional mind-body therapies for chronic back pain: protocol for the mind-body approaches to pain (MAP) randomized controlled trial. Trials. 2014;15:211. doi: 10.1186/1745-6215-15-211.
    1. Garland EL, Howard MO. Mindfulness-oriented recovery enhancement reduces pain attentional bias in chronic pain patients. Psychother Psychosom. 2013;82(5):311–318. doi: 10.1159/000348868.
    1. Hanley AW, Garland EL. Mapping the affective dimension of embodiment with the sensation manikin: validation among chronic pain patients and modification by mindfulness-oriented recovery enhancement. Psychosom Med. 2019;81(7):612–621. doi: 10.1097/PSY.0000000000000725.
    1. Garland EL, Gaylord SA, Palsson O, Faurot K, Douglas Mann J, Whitehead WE. Therapeutic mechanisms of a mindfulness-based treatment for IBS: effects on visceral sensitivity, catastrophizing, and affective processing of pain sensations. J Behav Med. 2012;35(6):591–602. doi: 10.1007/s10865-011-9391-z.
    1. Hogue A, Dauber S, Lichvar E, Bobek M, Henderson CE. Validity of therapist self-report ratings of fidelity to evidence-based practices for adolescent behavior problems: correspondence between therapists and observers. Admin Pol Ment Health. 2015;42(2):229–243. doi: 10.1007/s10488-014-0548-2.
    1. Fitzmaurice GM, Laird NM, Ware JH. Linear models for longitudinal continuous data. In: Applied Longitudinal Analysis. Hoboken: John Wiley & Sons; 2012. p. 101–3.
    1. Hardin JW, Hilbe JM. Model construction and estimating equations. In: Generalized Estimating Equations. Boca Raton: Wiley; 2005. p. 17–52.
    1. Childs JD, Fritz JM, Flynn TW, Irrgang JJ, Johnson KK, Majkowski GR, Delitto A. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: a validation study. Ann Intern Med. 2004;141(12):920–928. doi: 10.7326/0003-4819-141-12-200412210-00008.
    1. Fritz JM, Koppenhaver SL, Kawchuk GN, Teyhen DS, Hebert JJ, Childs JD. Preliminary investigation of the mechanisms underlying the effects of manipulation: exploration of a multivariate model including spinal stiffness, multifidus recruitment, and clinical findings. Spine. 2011;36(21):1772–1781. doi: 10.1097/BRS.0b013e318216337d.
    1. Alperstein D, Sharpe L. The efficacy of motivational interviewing in adults with chronic pain: a meta-analysis and systematic review. J Pain. 2016;17(4):393–403. doi: 10.1016/j.jpain.2015.10.021.
    1. O'Keeffe M, Purtill H, Kennedy N, Conneely M, Hurley J, O'Sullivan P, Dankaerts W, O'Sullivan K. Comparative effectiveness of conservative interventions for nonspecific chronic spinal pain: physical, behavioral/psychologically informed, or combined? A systematic review and meta-analysis. J Pain. 2016;17(7):755–774. doi: 10.1016/j.jpain.2016.01.473.
    1. Atlas SJ. Management of low Back Pain: getting from evidence-based recommendations to high-value care. Ann Intern Med. 2017;166(7):533–534. doi: 10.7326/M17-0293.
    1. Costa Lda C, Koes BW, Pransky G, Borkan J, Maher CG, Smeets RJ. Primary care research priorities in low back pain: an update. Spine. 2013;38(2):148–156. doi: 10.1097/BRS.0b013e318267a92f.
    1. Skelly AC, Chou R, Dettori JR, Turner JA, Friedly JL, Rundell SD, Fu R, Brodt ED, Wasson N, Winter C et al: 2018.
    1. LeVasseur M, Purzycki E, Williams H. Developing and implementing mindfulness programs in hospital and health-care settings. New Dir Adult Contin Educ. 2019;2019(161):91–101. doi: 10.1002/ace.20314.
    1. Garland EL, Manusov EG, Froeliger B, Kelly A, Williams JM, Howard MO. Mindfulness-oriented recovery enhancement for chronic pain and prescription opioid misuse: results from an early-stage randomized controlled trial. J Consult Clin Psychol. 2014;82(3):448–459. doi: 10.1037/a0035798.
    1. Garland EL, Hanley AW, Riquino MR, Reese SE, Baker AK, Salas K, Yack BP, Bedford CE, Bryan MA, Atchley R, et al. Mindfulness-oriented recovery enhancement reduces opioid misuse risk via analgesic and positive psychological mechanisms: a randomized controlled trial. J Consult Clin Psychol. 2019;87(10):927–940. doi: 10.1037/ccp0000390.

Source: PubMed

3
購読する